r‘ VLSI SYSTEM DESIGN A 1
k’ HIGH-LEVEL TRANSFORMATIONS

HIGH-LEVEL TRANSFORMATIONS

Topics:

* Data-flow graphs * Transformations for speed-up
* (Non)overlapped scheduling * Transformations for low power
* Minimal iteration period

Further reading:

= Parhi, K.K., "High-Level Algorithm and Architecture Transformations for DSP Synthesis”, Journal of
VLSI Signal Processing, Vol. 9, pp 121-143, (1995).

= Gerez, S.H., S.M. Heemstra de Groot, E.R. Bonsma and M.J.M. Heijligers, "Overlapped Scheduling
Techniques for High-Level Synthesis and Multiprocessor Realizations of DSP Algorithms”, In: J.C. Lo-
pez, R. Hermida and W. Geisselhardt (Eds.), Advanced Techniques for Embedded System Design and
Test, Kluwer Academic Publishers, Boston, pp 125-150, (1998).

Sabih H. Gerez, University of Twente March 3, 2003

r‘ VLSI SYSTEM DESIGN A 2
k‘ HIGH-LEVEL TRANSFORMATIONS

DATA-FLOW MODEL OF COMPUTATION

Data-flow graphs (DFGSs) explicitly represent parallelism in computa-
tions. A DFG may or may not contain information on control flow.

A data-flow graph is built from:
* nodes (vertices): representing computation, and
* edges: representing precedence relations.

Sabih H. Gerez, University of Twente March 3, 2003

r‘ VLSI SYSTEM DESIGN A 3
A HIGH-LEVEL TRANSFORMATIONS

DATA FLOW
Example:
X:=a*b; a b ¢ d
y:=c+d;
zZ:=xX+ty,;
X y
z

Sabih H. Gerez, University of Twente March 3, 2003

r‘ VLS| SYSTEM DESIGN A 4
A HIGH-LEVEL TRANSFORMATIONS

TOKEN FLOW IN A DFG

* A node in a DFG fires when to- b cd
kens are present at its inputs.
X o)y
* The input tokens are con- »
sumed and an output token is
produced. z
b c d
Xy
L]
z
Sabih H. Gerez, University of Twente March 3, 2003

r‘ VLSI SYSTEM DESIGN A 5
A HIGH-LEVEL TRANSFORMATIONS

IMPLICIT ITERATIVE DATA FLOW

* lteration implied by stream of input tokens arriving at regular instants
in time. The computation of the DFG is repeated every T, time units.

* Initial tokens act as buffers.

a{@-?{@f a[;{]oii? b[l]»a[l Y{@f

A o

C Cc C

Sabih H. Gerez, University of Twente March 3, 2003

r‘ VLSI SYSTEM DESIGN A 6
A HIGH-LEVEL TRANSFORMATIONS

IMPLICIT ITERATIVE DATA FLOW (Ctd.)

* Delay elements instead of ini-
tial tokens.

Two notations are encountered: a b

* explicit delay elements

* delay elements as an edge [
property

Sabih H. Gerez, University of Twente March 3, 2003

r‘ VLSI SYSTEM DESIGN |
k HIGH-LEVEL TRANSFORMATIONS

ITERATIVE DFG EXAMPLE

A second-order filter section.

Sabih H. Gerez, University of Twente March 3, 2003

r‘ VLS| SYSTEM DESIGN A 8
k HIGH-LEVEL TRANSFORMATIONS

IDFG NOTATION
IDFG(V,E) with:

* V. the vertex set: * E: the edge set

V=Cubuluo _ * §(c),c € C gives the duration
* C: setof Computatlonal nodes of a Computation (atomicy non-
* D: set of delay nodes preemptive, restricted library)
* . set of of input nodes * pu(d),d € D gives the multiplic-
* O: set of output nodes ity of a delay node

Sabih H. Gerez, University of Twente March 3, 2003

r‘ VLSI SYSTEM DESIGN A 9
A HIGH-LEVEL TRANSFORMATIONS

SYNCHRONOUS DATA-FLOW

The iterative data-flow graphisa * each edge has integer attrib-
special case of a synchronous utes for numbers of tokens pro-
data-flow graph (introduced by duced at one side and con-

Edward Lee). sumed at the other: multirate
o system

Characteristics: * each edge has a delay attrib-

* no conditional nodes ute.

Dl 332 1C3 23
®@ 0 @ 0

= Lee, E.A. and D.G. Messerschmitt, "Synchronous Data Flow”, Proceedings of the IEEE, Vol. 75(9), pp
1235-1245, (September 1987).

Sabih H. Gerez, University of Twente March 3, 2003

r‘ VLSI SYSTEM DESIGN A 10
A HIGH-LEVEL TRANSFORMATIONS

OPTIMIZATION CRITERIA

Most commonly used:

* Time-constrained synthesis: given the iteration period T, use as
few processors as possible or as little hardware as possible (typical
for DSP).

* Resource-constrained synthesis: given a multiprocessor configura-
tion or a set of hardware resources on chip, minimize T,

Another important issue:
* Minimization of power.

Sabih H. Gerez, University of Twente March 3, 2003

r‘ VLSI SYSTEM DESIGN A 11
k HIGH-LEVEL TRANSFORMATIONS

TERMINOLOGY

Subtasks:

* Scheduling: determine for each operation the time at which it should
be performed such that no precedence constraint is violated.

* Allocation: specify the hardware resources that will be necessary.

* Assignment: provide a mapping from each operation to a specific
functional unit and from each variable to a register.

Remarks:
* The subproblems are strongly interrelated; they are, however, often
solved separately.

* Scheduling (except for a few versions) is NP-complete = heuristics
have to be used.

Sabih H. Gerez, University of Twente March 3, 2003

r‘ VLS| SYSTEM DESIGN A 12
k HIGH-LEVEL TRANSFORMATIONS

SCHEDULING TERMINOLOGY

* Static scheduling means: mapping to time and processor (functional
unit, register, etc.) is identical in all iterations.
* A static schedule is either overlapped (expoiting interiteration paral-
lelism) or nonoverlapped.
hardware - 1. hardware «— To o
0 0 __units

i+ 17

time

nonoverlapped overlapped
= Parhi, K.K. and D.G. Messerschmitt, "Static Rate-Optimal Scheduling of Iterative Data-Flow Programs
via Optimum Unfolding”, IEEE Transactions on Computers, Vol. 40(2), pp 178-195, (February 1991).

Sabih H. Gerez, University of Twente March 3, 2003

r‘ VLSI SYSTEM DESIGN A 13
HIGH-LEVEL TRANSFORMATIONS

SCHEDULING TERMINOLOGY (Ctd.)

* Overlapped scheduling is also called: loop folding, software pipelin-
ing.

* The delay between consumption of input and production of output
is called the latency A. In general 4 = T,

* An ovelapped schedule may allow shorter iteration period or hard-
ware utilization, but:

* the search space is larger and finding optimal solutions harder.

Not covered in this presentation:
* cyclostatic schedules

* dynamic schedules (requires a
run-time scheduler).

A cyclostatic schedule

Sabih H. Gerez, University of Twente March 3, 2003

r‘ VLSI SYSTEM DESIGN h 14
HIGH-LEVEL TRANSFORMATIONS

THE MINIMAL ITERATION PERIOD T,
(To,.)

There are four cases:
* Acyclic DFG, nonoverlapped schedule;
* Acyclic DFG, overlapped schedule;
* Cyclic DFG, nonoverlapped schedule;
+ Replace all delay nodes by pairs of input and output nodes.
* Cyclic DFG, overlapped schedule.

For the nonoverlapped cases:

* Compute the critical path, longest path from any input to any output,
in the acyclic graph. Tom'n = “length of critical path”.

Sabih H. Gerez, University of Twente March 3, 2003

r‘ VLSI SYSTEM DESIGN A 15
HIGH-LEVEL TRANSFORMATIONS

EXAMPLE

Critical path in a cyclic DFG for a nonoverlapped schedule.

Sabih H. Gerez, University of Twente March 3, 2003

r‘ VLS| SYSTEM DESIGN A 16
HIGH-LEVEL TRANSFORMATIONS

OVERLAPPED SCHEDULING IN A CYCLIC
DFG

* Minimal iteration period is given by critical loop.
Example:

Ty = 6(cy) + d(cy) + 6(cy)

* When the DFG is acyclic, arbitrarily small iteration periods are pos-
sible (just duplicate the hardware as often as necessary; each copy
can start any time as there are no feedback loops in the DFG; see
later on).

Sabih H. Gerez, University of Twente March 3, 2003

r‘ VLSI SYSTEM DESIGN A 17
k’ HIGH-LEVEL TRANSFORMATIONS

CRITICAL LOOP

For a general DFG, Tom'n is given by:

> 6(0)

cel

mn al loops| Z/‘(d)

del

To

= Reiter, R., "Scheduling Parallel Computations”, Journal of the ACM, Vol. 15(4), pp 590-599, (October
1968).

r= Renfors, M. and Y. Neuvo, "The Maximum Sampling Rate of Digital Filters Under Hardware Speed
Constraints”, IEEE Transactions on Circuits and Systems, Vol. CAS-28(3), pp 196-202, (March
1981).

Sabih H. Gerez, University of Twente March 3, 2003

r‘ VLSI SYSTEM DESIGN A 18
k‘ HIGH-LEVEL TRANSFORMATIONS

EXAMPLE

r‘ VLSI SYSTEM DESIGN A 19
A HIGH-LEVEL TRANSFORMATIONS

ON COMPUTING T,

min
Remarks:

* Direct use of expression for T, not efficient (number of loops in
min
graph may grow exponentially with respect to number of nodes).

* Many polynomial-time algorithms have been published; survey in:

= Dasdan, A, S.S. Irani and R.K. Gupta, "Efficient Algorithms for Optimum Cycle Mean and Optmimum
Cost to Time Ratio Problems”, 36th Design Automation Conference, (1999).

* An easy to understand but not very efficient method is based on
“matrix multiplication”.

= Gerez, S.H., S.M. Heemstra de Groot and O.E. Herrmann, "A Polynomial-Time Algorithm for the
Computation of the Iteration-Period Bound in Recursive Data-Flow Graphs”, IEEE Transactions on
Circuits and Systems I: Fundamental Theory and Applications, Vol. 39(1), pp 49-52, (January 1992).

Sabih H. Gerez, University of Twente March 3, 2003

T, = 3 when"o(+) = 1" and “6(*) = 2"
min

Sabih H. Gerez, University of Twente March 3, 2003

r‘ VLSI SYSTEM DESIGN A 20

A HIGH-LEVEL TRANSFORMATIONS

SPEED-UP TECHNIQUES: PIPELINING

Insert delay elements on all edges . cutline
that are cut by a cut line through @—v—\ €,
an edge of the critical path in the : @

DFG. s

* Works for acyclic DFGs. @—g—/

Cs
* Schedule becomes over- ‘
lapped.
hardware €,
units
Cs)
Sabih H. Gerez, University of Twente March 3, 2003

r‘ VLSI SYSTEM DESIGN A 21
HIGH-LEVEL TRANSFORMATIONS

SPEED-UP TECHNIQUES: RETIMING

* Useful for obtaining the mini-

mal T, for a nonoverlapped @

schedule by reduction of criti- @

cal-path length, both for cyclic ' . A
and acyclic IDFGs. @ m

%@‘
&>—"

Example

©® © @

Sabih H. Gerez, University of Twente March 3, 2003

r‘ VLSI SYSTEM DESIGN h 22
HIGH-LEVEL TRANSFORMATIONS

SOME REMARKS ON To

* Retiming does not affect TOmin for overlapped scheduling of IDFG's.

* The T, for nonoverlapped scheduling obtained after optimal retiming
may still be larger than Tom_n.

* T, has been defined as an integer; a fractional T, makes sense
min min

when unfolding is applied (unfolding creates a new DFG of multiple
copies of the original one; see later).

r= Chao, L.F. and E.H.M. Sha, "Rate-Optimal Static Scheduling for DSP Data-Flow Programs”, 3rd Great
Lakes Symposium on VLSI Design, Automation of High-Performance VLS| Systems, pp 80-84,
(March 1993).

Sabih H. Gerez, University of Twente March 3, 2003

r‘ VLSI SYSTEM DESIGN A 23
HIGH-LEVEL TRANSFORMATIONS

SPEED-UP TECHNIQUES: PARALLEL
PROCESSING

* Works for acyclic IDFGs.

* Duplicate the IDFG as often as
desired speed-up factor.

* Allows any arbitrary speed-up,
but is proportionally expensive.

i4[K i[k — 1]

®)

D) i o2k + 1] l 0,2
a a

®)

l 0,[K
N

1424

process 2 inputs at a time

Sabih H. Gerez, University of Twente March 3, 2003

r‘ VLS| SYSTEM DESIGN A 24
HIGH-LEVEL TRANSFORMATIONS

UNFOLDING (1)

* A technique for the duplication * If J6(+) =1 and 6(*) = 2,
of cyclic IDFGs in combination T. = P} -9
with processing multiple inputs Onin |2 '
at a time. * Using unfolding by 2, one can

* Consider the following IDFG: reach the value T, = %
min
ifK K * The graph computes the fol-

' ° lowing difference equations,

assuming that one multiplies by

o[K] a factor a:
(T gk = i[K + o[k — 1]
okl = agk — 1]

Sabih H. Gerez, University of Twente March 3, 2003

r‘ VLSI SYSTEM DESIGN A 25
HIGH-LEVEL TRANSFORMATIONS

UNFOLDING (2)

* The precise unfolding algo- * The method will be illustrated
rithm will not be given here; it using the example IDFG and

amounts to duplicating all ver- unfolding factor of two, mean-
tices in the IDFG such that n ing that two inputs will be avail-
copies of each vertex is created able per iteration and two out-
(n is the unfolding factor) and puts will be produced. The
then to connecting these ver- equations:

tices with edges having an ap- 2K = i[2K] + o[2k — 1]

propriate number of delay ele-

ments. The unfolded graph can s2k + 1 = i[2k + 1] + o[2K]

r‘ VLSI SYSTEM DESIGN A 26
HIGH-LEVEL TRANSFORMATIONS

UNFOLDING (3)

* The example IDFG after un- * Note that the unfolded IDFG

folding: has two loops with one delay

element each and a computa-

i[2K] 2] o[2k + 1] tional duration of 3. Because a

D e) delay element creates an offset

of two indices (2 inputs are pro-

o[2k — 1] cessed in each iteration), the

i[2k + 1] 2k + 1] s[2k — 1] o[2K] effective iteration period bound
isequalto Ty = %

Sabih H. Gerez, University of Twente March 3, 2003

also be reconstructed from the o[2k] = as[2k — 1]
equations. o[2k + 1] = ag2K]
Sabih H. Gerez, University of Twente March 3, 2003
r‘ VLS| SYSTEM DESIGN A 27

HIGH-LEVEL TRANSFORMATIONS

LOOK-AHEAD TRANSFORMATION (1)

* Consider the following computation:
X[n] = ax[n — 1] + u[n]

u[n]

e

* |t has one multiplication and one addition in the critical loop with one
delay element. If 6(+) = 1and 6(*) = 2, T = [% = 3.

Sabih H. Gerez, University of Twente March 3, 2003

r‘ VLS| SYSTEM DESIGN A 28
HIGH-LEVEL TRANSFORMATIONS

LOOK-AHEAD TRANSFORMATION (2)

* Apply look-ahead transformation (think of the principle of look-
ahead addition):
X[n] = a(@axn — 2] + u[n — 1]) + u[n]
X[n] = a®[n — 2] + au[n — 1] + u[n]
* The new equation has one mul- un -1

tiplication and one addition in a
the critical loop with two delays m X Q

, X[
leading to Ty = {

3
32 Do (D—D—®
* The transformation can affect
the original computation (final
wordlength effects). aZD @

x[n - 2]

Sabih H. Gerez, University of Twente March 3, 2003

