
IMPLEMENTATION OF DSP

ALGORITHM TRANSFORMATIONS March 4, 202

1A

© Sabih H. Gerez, University of Twente, The Netherlands

IMPLEMENTATION OF DIGITAL SIGNAL
PROCESSING (IDSP):

ALGORITHM TRANSFORMATIONS

Sabih H. Gerez
University of Twente
Faculty of EEMCS
Computer Architecture for Embedded Systems (EWI-CAES)

IMPLEMENTATION OF DIGITAL SIGNAL PROCESSING
ALGORITHM TRANSFORMATIONS

1

February 19, 2012Sabih H. Gerez, University of Twente

TOPICS
* Pipelining
* Retiming
* Parallel processing
* Loop unrolling
* Unfolding
* Look-ahead transformation

IMPLEMENTATION OF DIGITAL SIGNAL PROCESSING
ALGORITHM TRANSFORMATIONS

2

February 19, 2012Sabih H. Gerez, University of Twente

SPEED-UP TECHNIQUES: PIPELINING
Insert delay elements on all edges
that are cut by a cut line through
an edge of the critical path in the
DFG.
* Works for acyclic DFGs.
* Schedule becomes over-

lapped.

time

hardware
units T0

i � 1

i

c3

c1

c2

c4

c5

c3

c1

c2

c4

c5

T0

T0

cut line

Example

IMPLEMENTATION OF DIGITAL SIGNAL PROCESSING
ALGORITHM TRANSFORMATIONS

3

February 19, 2012Sabih H. Gerez, University of Twente

SPEED-UP TECHNIQUES: RETIMING
* Useful for obtaining the mini-

mal T0 for a nonoverlapped
schedule by reduction of criti-
cal-path length, both for cyclic
and acyclic IDFGs.

c3

c1

c2

c4

c5

T0

T0

c3

c1

c2

c4

c5

T0

Example

IMPLEMENTATION OF DIGITAL SIGNAL PROCESSING
ALGORITHM TRANSFORMATIONS

4

February 19, 2012Sabih H. Gerez, University of Twente

OPTIMAL RETIMING
* It is possible to compute the optimal positions of the delay elements

in an efficient way.
* The optimization goal is to minimize the the longest path from any

delay element to any other. In other words, to minimize the iteration
period of a non-overlapping schedule.

� Leiserson, C.E., F.M. Rose and J.B. Saxe, ”Optimizing Synchronous Circuitry by Retiming (Preliminary
Version)”, In: R. Bryant (Ed.), Third Caltech Conference on VLSI, Springer Verlag, Berlin, pp. 87–116,
(1983).

� Leiserson, C.E. and J.B. Saxe, Retiming Synchronous Circuitry, Algorithmica, Vol.6, pp. 5–35, (1991).

IMPLEMENTATION OF DIGITAL SIGNAL PROCESSING
ALGORITHM TRANSFORMATIONS

5

February 19, 2012Sabih H. Gerez, University of Twente

RETIMING: LEISERSON ET AL.
CORRELATOR EXAMPLE

Given: �(�)� 7 and �(?)� 3; T0min � ?

IMPLEMENTATION OF DIGITAL SIGNAL PROCESSING
ALGORITHM TRANSFORMATIONS

6

February 19, 2012Sabih H. Gerez, University of Twente

OPTIMAL RETIMING VS. FASTEST
SCHEDULE (1)

c7

c3
d2c1 c2 c4

d1

c5c6
T0+

i1

o1

m1 m2 m3 m4

T0+ +

T0?

H

? T0? ?

T0

d3d4

d5c0

T0min � 13 for non-overlapped schedule when �(�)� 7 and
�(?)� 3; however, T0min � 10 for an overlapped schedule.

IMPLEMENTATION OF DIGITAL SIGNAL PROCESSING
ALGORITHM TRANSFORMATIONS

7

February 19, 2012Sabih H. Gerez, University of Twente

OPTIMAL RETIMING VS. FASTEST
SCHEDULE (2)

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁ

ÁÁÁÁÁÁÍÍÍÍÍÍÍ

ÍÍÍÍÍÍÍ

c01
c05c04

c03c02

c06
c07f1

f2

f3

f4

T0

c12

T0
–7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5

c�15

c17

Overlapped schedule with T0min � 10.

IMPLEMENTATION OF DIGITAL SIGNAL PROCESSING
ALGORITHM TRANSFORMATIONS

8

February 19, 2012Sabih H. Gerez, University of Twente

SOME REMARKS ON T0min
* Retiming does not affect T0min for overlapped scheduling of IDFG’s.
* The T0 for nonoverlapped scheduling obtained after optimal retiming

may still be larger than T0min. This is not true when all computational
delays are equal to unity.

* T0min has been defined as an integer; a fractional T0min makes sense
when unfolding is applied (unfolding creates a new DFG of multiple
copies of the original one; see later).

� Chao, L.F. and E.H.M. Sha, ”Rate-Optimal Static Scheduling for DSP Data-Flow Programs”, 3rd Great
Lakes Symposium on VLSI Design, Automation of High-Performance VLSI Systems, pp 80–84,
(March 1993).

IMPLEMENTATION OF DIGITAL SIGNAL PROCESSING
ALGORITHM TRANSFORMATIONS

9

February 19, 2012Sabih H. Gerez, University of Twente

SPEED-UP TECHNIQUES: PARALLEL
PROCESSING

* Works for acyclic IDFGs.
* Duplicate the IDFG as often as

desired speed-up factor.
* Allows any arbitrary speed-up,

but is proportionally expensive.

+

i1[k]
T0

i1[k � 1]

o1[k]

+

i1[2k � 1]
T0

o1[2k � 1]

+

i1[2k � 1]

o1[2k]

i1[2k]

process 2 inputs at a time

IMPLEMENTATION OF DIGITAL SIGNAL PROCESSING
ALGORITHM TRANSFORMATIONS

10

February 19, 2012Sabih H. Gerez, University of Twente

LOOP UNROLLING
Loop unrolling is the process of explicitly describing multiple iterations
of some loop in order to create more parallelism.

Original loop:

for (i=0; i<n; i++) {
 a[i] = f(x[i]);
 y[i] = g(a[i]);
}

After unrolling with a factor 2:
for (i=0; i<n/2; i++) {
 a[2*i] = f(x[2*i]);
 y[2*i] = g(a[2*i]);
 a[2*i+1] = f(x[2*i+1]);
 y[2*i+1] = g(a[2*i+1])
}

For an IDFG, loop unrolling by a factor n amounts to converting it into
an acyclic graph (by cutting the delay nodes) and concatenating n cop-
ies of the acyclic graph.

IMPLEMENTATION OF DIGITAL SIGNAL PROCESSING
ALGORITHM TRANSFORMATIONS

11

February 19, 2012Sabih H. Gerez, University of Twente

UNFOLDING (1)
* A technique for the duplication

of cyclic IDFGs in combination
with processing multiple inputs
at a time. Cycles in the graph
are preserved as opposed to
loop unrolling.

* Consider the following IDFG:

T0

+ T0
i[k]

o[k]�

s[k]

* If �(�)� 1 and �(*)� 2,
T0min ���

�3
2��
�
� 2.

* Using unfolding by 2, one can
reach the value T0min �

3
2.

* The graph computes the fol-
lowing difference equations,
assuming that one multiplies by
a factor a:

s[k]� i[k]� o[k � 1]

o[k]� as[k � 1]

IMPLEMENTATION OF DSP

ALGORITHM TRANSFORMATIONS March 5, 2021

5A

© Sabih H. Gerez, University of Twente, The Netherlands

• Topology-preserving
transformation:
– Duplicate graph
– Remove delay

elements

UNFOLDING (1A)

T0

T0

[] []
[]

[] []
[]

[+ 1] [2 + 1]
[+ 1]

IMPLEMENTATION OF DSP

ALGORITHM TRANSFORMATIONS March 5, 2021

6A

© Sabih H. Gerez, University of Twente, The Netherlands

UNFOLDING (1B)[] []
[]

[+ 1] [2 + 1]
[+ 1]

T0

• Add missing edges either
with or without delay node.

T0

IMPLEMENTATION OF DIGITAL SIGNAL PROCESSING
ALGORITHM TRANSFORMATIONS

12

February 19, 2012Sabih H. Gerez, University of Twente

UNFOLDING (2)
* The precise unfolding algo-

rithm will not be given here; it
amounts to duplicating all ver-
tices in the IDFG such that n
copies of each vertex is created
(n is the unfolding factor) and
then to connecting these ver-
tices with edges having an ap-
propriate number of delay ele-
ments. The unfolded graph can
also be reconstructed from the
equations.

* The method will be illustrated
using the example IDFG and
unfolding factor of two, mean-
ing that two inputs will be avail-
able per iteration and two out-
puts will be produced. The
equations:

s[2k]� i[2k]� o[2k � 1]
s[2k � 1]� i[2k � 1]� o[2k]

o[2k]� as[2k � 1]
o[2k � 1]� as[2k]

IMPLEMENTATION OF DIGITAL SIGNAL PROCESSING
ALGORITHM TRANSFORMATIONS

13

February 19, 2012Sabih H. Gerez, University of Twente

UNFOLDING (3)
* The example IDFG after un-

folding:

+
T0

i[2k]

o[2k]

�

s[2k]

+ T0

o[2k � 1]

s[2k � 1]i[2k � 1]

�

o[2k � 1]

s[2k � 1]

* Note that the unfolded IDFG
has two loops with one delay
element each and a computa-
tional duration of 3. Because a
delay element creates an offset
of two indices (2 inputs are pro-
cessed in each iteration), the
effective iteration period bound
is equal to T0min �

3
2.

IMPLEMENTATION OF DIGITAL SIGNAL PROCESSING
ALGORITHM TRANSFORMATIONS

14

February 19, 2012Sabih H. Gerez, University of Twente

LOOK-AHEAD TRANSFORMATION (1)
* Consider the following computation:

x[n]� ax[n � 1]� u[n]

+ T0
u[n]

�

x[n]

x[n � 1]

a

* It has one multiplication and one addition in the critical loop with one
delay element. If �(�)� 1 and �(*)� 2, T0min ���

�3
1��
�
� 3.

IMPLEMENTATION OF DIGITAL SIGNAL PROCESSING
ALGORITHM TRANSFORMATIONS

15

February 19, 2012Sabih H. Gerez, University of Twente

LOOK-AHEAD TRANSFORMATION (2)
* Apply look-ahead transformation (think of the principle of look-

ahead addition):
x[n]� a(ax[n � 2]� u[n � 1])� u[n]
x[n]� a2x[n � 2]� au[n � 1]� u[n]

* The new equation has one mul-
tiplication and one addition in
the critical loop with two delays
leading to T0min ���

�3
2��
�
� 2.

* The transformation can affect
the original computation (finite
word length effects).

+ T0u[n]

�

x[n]

T0

u[n � 1]

� a

a2

+

T0
x[n � 2]

TRANSFORMATIONS: ADDENDUM

IMPLEMENTATION OF DIGITAL SIGNAL PROCESSING

March 3, 2013

1

© Sabih H. Gerez, University of Twente, The Netherlands

Question (related to the DFG after the look-ahead transformation): how is it possible
that the cycle can be executed in 2 clock cycles while there are two delay elements
in the loop and also clock cycles are spent in the computations?

Answer: delay elements are about timing at the data-flow level; they do not
necessarily correspond to registers in the implementation.

To explain this, a data-path and a schedule are given below for the loop part of the
DFG (exercise: complete the design for the entire DFG).

M1 A1

R1 R2
R3

M1 m[n-2] m[n-1] m[n]

x[n-2]

m[n]

x[n-1]x[n-3] x[n]A1
m[n-3]R1 m[n-2] m[n-1] m[n]

x[n-3]R2 x[n-2] x[n-1]

R3 x[n-4] x[n-3] x[n-2]

x[n-2]

m[n-2]

x[n-2]

x[n-2]

m[n-2]

m[n-1]

x[n-1]

The schedule has an iteration period of 2 clock cycles. The input register of an FU
needs to have stable contents during the execution time of the FU (that is why R3
stores its contents for two clock cycles). R1 and R2 could be shared, saving 1
register at the expense of one multiplexer. Note that although m[n] and x[n-2] are
conceptually 2 iterations, so 4 clock cycles, apart, in the realization, they are only
separated by 2 clock cycles. This is due to the overlapped schedule.

IMPLEMENTATION OF DIGITAL SIGNAL PROCESSING
ALGORITHM TRANSFORMATIONS

16

February 19, 2012Sabih H. Gerez, University of Twente

RELATION WITH RTL SYNTHESIS
* Multicycle operations are not so common in RTL synthesis (one nor-

mally defines a clock period for the registers and all combinational
logic should execute in this period).

* RTL synthesis programs such as the Synopsys Design Compiler do
support multicycle operations, by the way.

* Presented theory becomes less interesting when all computations
have a unit delay:
+ Non-overlapped scheduling after optimal retiming gives fastest

implementation.
* Theory of transformations is still applicable to combinational logic in

case of one-to-one mapping (think e.g. of converting the ripple-carry
adder to the look-ahead adder by means of the look-ahead trans-
formation).

