THE INTERPRETATION OF BIT VECTORS

• Which number is this?

1 1 0 1

TOPICS

• Fixed-point data types
• SystemC
• Peak-value estimation
• Word-length optimization
FIXED-POINT DATA TYPES

- A specific interpretation of a logic vector
 - Binary point
 - Integer and fractional part: iwl and fwl (integer and fractional word length)
 - Signed or unsigned

EXAMPLES OF FIXED-POINT NUMBERS

- Example pattern: 1101
 - With iwl = 2 and unsigned → 13/4
 - With iwl = 2 and signed → -3/4
 - With iwl = 6 and unsigned → 52
 - With iwl = 6 and signed → -12
 - With iwl = -1 and unsigned → 13/32
 - With iwl = -1 and signed → -3/32

FIXED-POINT ADDITION/SUBTRACTION

- Integer adder can be used after:
 - Alignment of binary point
 - Sign extension

A: Signed 2,4 B: Signed 4,2 Y: Signed 5,4
(2,4) S S S (4,2) S S 0 0 + (5,4) S S Y = A + B

FIXED-POINT MULTIPLICATION

- Integer multiplier can directly be used.
- One only needs to figure out the location of the binary point.

A: Signed 2,4 B: Signed 4,2
(2,4) S (4,2) S
* Signed 5,6 or Signed 6,6 ?
QUANTIZATION: TRUNCATION
• If the target provides less accuracy than the value to assign:
 – *Truncation* → no hardware
 – What happens to the signal in EE terms?

QUANTIZATION: ROUNдинg
• If the target provides less accuracy than the value to assign:
 – *Rounding* (various modes) → extra hardware

OVERFLOW: WRAP AROUND
• If the value to assign is outside the range of target:
 – *Wrap around* → no hardware

OVERFLOW: SATURATION
• If the value to assign is outside the range of target:
 – *Saturation* (various modes) → extra hardware
SystemC

- Open source standard for system-level modeling, based on C++ class libraries and a simulation kernel.
- Provides modeling from system level down to (mainly) register-transfer level (RTL).
- For more details, see the Accellera web site (non-profit organization for system-level design):

 http://www.accellera.org/

SystemC FIXED-POINT DATA TYPES

- Declaration (signed and unsigned version):

 sc_fixed<wl, iwl, q_mode, o_mode, n_bits> x;
 sc_ufixed<wl, iwl, q_mode, o_mode, n_bits> x;

 - wl: word length, \(iwl + fwl \)
 - iwl: integer word length
 - q_mode: (optional) quantization mode, default is truncation
 - o_mode: (optional) overflow mode, default is wrap around
 - n_bits: (optional) number of bits for overflow (\(n_bits \) are saturated, the others are wrapped around)
- \(sc_{\text{fix}}/sc_{\text{ufix}} \) data types can be resized at run time

SystemC FIXED-POINT CODE EXAMPLE

```
sc_fixed<6, 2> a;
sc_fixed<6, 4> b;
sc_fixed<3, 2, SC_RND, SC_SAT> c;

c = a + b;
```

- Implementation:
 - Calculate sum at full precision
 - Perform quantization processing
 - Perform overflow processing

ALGORITHMIC C

- Algorithmic C is a library for fixed-point arithmetic (and more) in C, developed by Siemens (former Mentor Graphics) and donated as open source:

 https://github.com/hlslibs/ac_types/

- Faster than SystemC
- Supported by the Siemens HLS tool Catapult (available in the CAES Group)
MATLAB

- Matlab is an *untyped* language:
 - A variable can be assigned objects of any type.
- \(a = \text{fi}(3.14, 1, 3, 2); \)
 - \(a \) holds a signed (second argument = 1) fixed-point number with 3 integer and 2 fractional bits.
 - As opposed to SystemC, saturation and rounding are the default.
 - So, in the example \(a \) gets value 3.25.
- \(a = 2.7; \)
 - \(a \) gets assigned a double (floating-point number); previous fixed-point properties are lost.
- \(a(:) = 2.7; \)
 - \(a \) preserves previous fixed-point properties.

THE FIXED-POINT DESIGN PROBLEM (1)

- Mathematical descriptions of DSP algorithms often assume infinite precision in the signal representation.
- The closest approximation of infinite precision in computers is the *floating-point* number representation.
- Floating-point hardware is expensive and is avoided if possible.
- Implementations therefore use fixed-point hardware.

- Problem: *which fixed-point formats should be used to obtain the cheapest implementation of the original algorithm while respecting some performance measure?*

THE FIXED-POINT DESIGN PROBLEM (2)

- One should look at:
 - The dynamic range: avoid *overflow* and therefore know peak values.
 - The accuracy: *quantization* levels.

BOUGANIS FIXED-POINT FORMAT

- Considers signed numbers only; sign bit is not counted in size.
PEAK-VALUE ESTIMATION

- Related to the fact that signal magnitude may grow due to addition or multiplication
- In a stable system, the signal cannot grow indefinitely
- Question is: what is the maximal value encountered for each signal in the system?
- Issue is not directly related to accuracy, the number of bits used for each signal.

PEAK-VALUE ESTIMATION METHODS

- Analytic:
 - examine transfer functions
- Data-range propagation:
 - Interval analysis
 - Compute result interval from input intervals
 - Tends to overestimate requirements
- Simulation-driven analysis:
 - Monitor values produced during a representative simulation and record extremes
 - Use a safety factor > 1

ANALYTIC PEAK-VALUE ESTIMATION

- Consider an FIR filter:
 \[y[n] = \sum_{k=0}^{N} h[k] \cdot x[n \cdot k] \]
- Then, an upper bound for the output value is found by:
 \[y_{\text{peak}} = x_{\text{peak}} \sum_{k=0}^{N} |h[k]| \]
- For recursive filters, a similar approach can be followed, starting from a state-space representation.

INTERVAL ANALYSIS (1)

- Represent each value \(x \) as an interval: \(\tilde{x} = [x^-, x^+] \)
- For each arithmetic operation, one can calculate the result interval from the operand intervals. For example:
 \[\tilde{x} + \tilde{y} = [x^- + y^-, x^+ + y^+] \]
 \[\tilde{x} \tilde{y} = [\min(x^- y^-, x^- y^+, x^+ y^-, x^+ y^+), \max(x^- y^-, x^- y^+, x^+ y^-, x^+ y^+)] \]
INTERVAL ANALYSIS (2)

Beware: this is no FIR filter, but a fantasy design.

[Image of a diagram showing interval analysis with ranges like [-2, 1], [0.3, -0.4, -0.7], [-0.6, 0.3], [-0.4, 0.8], [-0.7, 1.4], [-1, 1.1], [-1.4, 1.54].]

WORD-LENGTH PROPAGATION

<table>
<thead>
<tr>
<th>Type</th>
<th>Propagation rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAIN</td>
<td>For input ((n_a, p_a)) and coefficient ((n_b, p_b)):</td>
</tr>
<tr>
<td></td>
<td>(p_j = p_a + p_b)</td>
</tr>
<tr>
<td></td>
<td>(n_j^b = n_a + n_b)</td>
</tr>
<tr>
<td>ADD</td>
<td>For inputs ((n_a, p_a)) and ((n_b, p_b)):</td>
</tr>
<tr>
<td></td>
<td>(p_j = \max(p_a, p_b) + 1)</td>
</tr>
<tr>
<td></td>
<td>(n_j^b = \max(n_a, n_b + p_a - p_b) - \min(0, p_a - p_b) + 1)</td>
</tr>
<tr>
<td></td>
<td>(for (n_a > p_a - p_b) or (n_b > p_b - p_a))</td>
</tr>
<tr>
<td>DELAY or FORK</td>
<td>For input ((n_a, p_a)):</td>
</tr>
<tr>
<td></td>
<td>(p_j = p_a)</td>
</tr>
<tr>
<td></td>
<td>(n_j^b = n_a)</td>
</tr>
</tbody>
</table>

QUANTIZATION: NOISE MODELING (1)

- Suppose signal with fixed-point format \((n, 0)\) is multiplied with another signal with fixed-point format \((n, 0)\) and the result is truncated to \(n\) bits.
- Error ranges from 0 to \(2^{-2n} - 2^{-n} \approx -2^{-n}\)
- Uniform distribution of error: \(p(e) = 2^n, \ e \in [-2^{-n}, 0] \)
- Consider multiplication; is the error really uniformly distributed?

NOISE MODELING (2)

- Average error is: \(-2^{-(n+1)}\)
- Variance:

\[
\sigma^2 = \int_{-2^{-n}}^{0} 2^n [e + 2^{-(n+1)}]^2 \, de = \frac{1}{12} 2^{-2n}
\]
NOISE PROPAGATION

• In linear time-invariant (LTI) systems, one can analytically calculate the effect of quantization in input or intermediate nodes to noise on the output.

• In case of non-linear systems, one could linearize the system by means of Taylor expansion (a similar approach as a small-signal model used in electronics).

• Noise propagation methods have the advantage of reduced computational complexity with respect to a simulations-only approach.

FIXED-POINT OPTIMIZATION PROBLEM

• Define a performance measure. Examples:
 – SNR at the output of a filter
 – Bit-error rate in a communication system

• Define a cost measure, such as the area of the circuit.

• Goal is to satisfy a performance requirement at minimal cost by optimally choosing a fixed-point format for each signal in the system.

• The most practical approach is to start with a floating-point model and gradually replace the data types by fixed-point types while monitoring performance by simulations.

SCHEDULING, ETC.

• Sharing of resources across multiple clock cycles puts additional constraints on the fixed-point format of signals.