THE CORDIC ALGORITHM AND CORDIC ARCHITECTURES

Implementation of Digital Signal Processing

Sabih H. Gerez
University of Twente

OUTLINE

• CORDIC algorithm:
 – Rotation and vectoring modes
• CORDIC architectures
• Introduction to Project GFS
• Applications of CORDIC

WHAT IS CORDIC?

• CORDIC: abbreviation of coordinate rotation digital computer.
• First publication by Volder, 1959.
• A method from the field of computer arithmetic allowing for the efficient implementation of a wide range of computations.

REFERENCES

VECTOR ROTATIONS (1)

- Consider a sequence of rotations of a vector \((x(i), y(i))^T\) rotated by \(\alpha_i\) to give vector \((x(i+1), y(i+1))^T\).

- So:
 \[
 \begin{bmatrix}
 x(i+1) \\
 y(i+1)
 \end{bmatrix}
 =
 \begin{bmatrix}
 \cos(\alpha_i) & -\sin(\alpha_i) \\
 \sin(\alpha_i) & \cos(\alpha_i)
 \end{bmatrix}
 \begin{bmatrix}
 x(i) \\
 y(i)
 \end{bmatrix}

 \]

- After rewrite:
 \[
 \begin{bmatrix}
 x(i+1) \\
 y(i+1)
 \end{bmatrix}
 =
 \begin{bmatrix}
 1 & -\tan(\alpha_i) \\
 \tan(\alpha_i) & 1
 \end{bmatrix}
 \begin{bmatrix}
 x(i) \\
 y(i)
 \end{bmatrix}

 \]

- If \(\tan(\alpha_i)\) is chosen such that \(\tan(\alpha_i) = d_i 2^{-i}\), with \(d_i = \pm 1\), then the rotations can be executed without multiplications except for initial factor \(\cos(\alpha_i) = \frac{1}{\sqrt{1 + 2^{-2i}}}\).

VECTOR ROTATION EXAMPLE (1)

- The 8 subsequent rotations for a rotation of 15 degrees are:

<table>
<thead>
<tr>
<th>(i)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2^{-i})</td>
<td>1</td>
<td>1/2</td>
<td>1/4</td>
<td>1/8</td>
<td>1/16</td>
<td>1/32</td>
<td>1/64</td>
<td>1/128</td>
<td>1/256</td>
</tr>
<tr>
<td>(\arctan(2^{-i}))</td>
<td>45.0</td>
<td>26.6</td>
<td>14.0</td>
<td>7.1</td>
<td>3.6</td>
<td>1.8</td>
<td>0.9</td>
<td>0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>(d_i)</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(\Sigma \alpha_i)</td>
<td>45.0</td>
<td>18.4</td>
<td>4.4</td>
<td>11.5</td>
<td>15.1</td>
<td>13.3</td>
<td>14.2</td>
<td>14.7</td>
<td>14.9</td>
</tr>
</tbody>
</table>

- The arctangent values can be precomputed and stored in a look-up table (LUT), say \(L(i)\).
- The \(d_i\) depend on the required rotation angle.

VECTOR ROTATIONS (2)

- If \(\tan(\alpha_i) = d_i 2^{-i}\), this means: \(\alpha_i = d_i \arctan(2^{-i})\).
- For an arbitrary angle \(\alpha, -\frac{\pi}{2} \leq \alpha \leq \frac{\pi}{2}\), the angle can then be decomposed as:
 \[
 \alpha = \sum_{i=0}^{n} d_i \arctan(2^{-i})
 \]

 Angles involved:

<table>
<thead>
<tr>
<th>(i)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2^{-i})</td>
<td>1</td>
<td>1/2</td>
<td>1/4</td>
<td>1/8</td>
<td>1/16</td>
<td>1/32</td>
<td>1/64</td>
<td>1/128</td>
<td>1/256</td>
</tr>
<tr>
<td>(\arctan(2^{-i})[\text{deg}])</td>
<td>45.0</td>
<td>26.6</td>
<td>14.0</td>
<td>7.1</td>
<td>3.6</td>
<td>1.8</td>
<td>0.9</td>
<td>0.4</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Note that the vector length is growing at each step.
CORDIC CONVERGENCE

• Can one approximate an angle up to any degree of precision by increasing the number of rotation steps or is there any limit to the precision that can be achieved?

• One can indeed achieve any degree of precision as the sum of the angles in steps $i + 1$ to ∞ is larger or equal to the angle in step i for any i.

• Clear from table for small i.

• For large i, $\arctan(2^{-i}) \approx 2^{-i}$,

\[
\sum_{n=i+1}^{\infty} 2^{-n} = 2^{-(i+1)} \sum_{n=0}^{\infty} 2^{-n} = 2^{-i}
\]

ANGLE ACCUMULATION

• Keep track of total rotation angle in an angle accumulator:

\[z^{(i+1)} = z^{(i)} - d_i L(i) \]

• The angle accumulator can be used to determine d_i:
 – Initialize $z^{(0)} = \alpha$.
 – Factor d_{i+1} becomes 1 when $z^{(i)} \geq 0$ and -1 otherwise.

<table>
<thead>
<tr>
<th>i</th>
<th>2^{-i}</th>
<th>d_i</th>
<th>$z^{(i)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>15.0</td>
</tr>
<tr>
<td>1</td>
<td>1/2</td>
<td>-1</td>
<td>-30.0</td>
</tr>
<tr>
<td>2</td>
<td>1/4</td>
<td>-1</td>
<td>-3.4</td>
</tr>
<tr>
<td>3</td>
<td>1/8</td>
<td>1</td>
<td>10.6</td>
</tr>
<tr>
<td>4</td>
<td>1/16</td>
<td>1</td>
<td>3.5</td>
</tr>
<tr>
<td>5</td>
<td>1/32</td>
<td>1</td>
<td>-0.1</td>
</tr>
<tr>
<td>6</td>
<td>1/64</td>
<td>-1</td>
<td>1.7</td>
</tr>
<tr>
<td>7</td>
<td>1/128</td>
<td>-1</td>
<td>0.8</td>
</tr>
<tr>
<td>8</td>
<td>1/256</td>
<td>1</td>
<td>0.3</td>
</tr>
<tr>
<td>9</td>
<td>1/252</td>
<td>1</td>
<td>0.1</td>
</tr>
</tbody>
</table>

CORDIC EQUATIONS SUMMARY

• Original equations were:

\[
\begin{bmatrix} x^{(i+1)} \\ y^{(i+1)} \end{bmatrix} = \cos(a_i) \begin{bmatrix} 1 \\ -\tan(a_i) \end{bmatrix} \begin{bmatrix} x^{(i)} \\ y^{(i)} \end{bmatrix}
\]

• Making use of the special values for the tangent, leaving out the multiplication by the cosine and combining with angle accumulation, one gets:

\[
\begin{align*}
x^{(i+1)} &= x^{(i)} - d_i 2^{-i} y^{(i)} \\
y^{(i+1)} &= d_i 2^{-i} x^{(i)} + y^{(i)} \\
z^{(i+1)} &= z^{(i)} - d_i L(i)
\end{align*}
\]

ROTATION-MODE CORDIC

• Goal is to rotate vector by angle α.

• Initialization:

\[
\begin{align*}
x^{(0)} &= x \\
y^{(0)} &= y \\
z^{(0)} &= \alpha
\end{align*}
\]

• Final result:

\[
\begin{align*}
x^{(n)} &= K (x \cos(\alpha) - y \sin(\alpha)) \\
y^{(n)} &= K (x \sin(\alpha) - y \cos(\alpha)) \\
z^{(n)} &= 0
\end{align*}
\]

• Where:

\[
K = \prod_{i=1}^{n} \sqrt{1 + 2^{-2i}}
\]

• K converges to 1.647.

• Conclusion: the result vector is rotated but scaled version of original vector.
VECTORING-MODE CORDIC

- Determine \(d_i \) by an alternative rule: \(d_i = -1 \) when \(y^{(i)} > 0 \) and \(d_i = +1 \) when \(y^{(i)} \leq 0 \).
- Initialization:
 \[
 x^{(0)} = x, \quad y^{(0)} = y, \quad z^{(0)} = 0
 \]

- Final result:
 \[
 x^{(n)} = K \sqrt{x^2 + y^2}, \quad y^{(n)} = 0, \quad z^{(n)} = \arctan\left(\frac{y}{x}\right)
 \]

- This means that the initial vector has been rotated (and scaled) onto the X-axis, while the angle with the X-axis has been computed as well.

BASIC APPLICATIONS OF CORDIC

- **Arctangent, vector-magnitude** calculation and **rectangular-to-polar conversion**: direct result of vectoring-mode CORDIC.
 - **Polar-to-rectangular conversion**, i.e. from \((r, \theta)\) to \((x, y)\):
 - Set \(x^{(0)} = r, y^{(0)} = 0 \), and \(z^{(0)} = \theta \) in rotation mode.
 - Result will be \(x = x^{(n)} = Kr \cos(\theta), y = y^{(n)} = Kr \sin(\theta) \).
 - Correction for scaling by \(K \) may be necessary (does not require a full-fledged multiplier as \(K \) is constant).

- **Sine or cosine** calculation:
 - See above, set \(x^{(0)} = 1/K \). Then \(x^{(n)} = \cos(\theta) \) and \(y^{(n)} = \sin(\theta) \).

- **Beyond the scope of this course**: multiplication, division, hyperbolic functions, etc. (see paper by Andraka).

ARCHITECTURE ITERATIVE CORDIC

- The iterative architecture requires one clock cycle per iteration.
- It requires a barrel shifter to shift operand over a variable number of positions.

- One can also unroll the architecture to perform all operations in a single clock cycle:
 - Amounts to instantiate new hardware for each iteration.
 - Possibly adding pipelining if the critical path becomes too long.
 - The barrel shifter is no longer necessary: each stage in the hardware has a fixed shift which costs just wires.
 - One could also unroll the architecture partially.

UNROLLED ARCHITECTURE

Controller should take care of initializations, add/subtract decisions, number of iterations, etc.
DESIGN EXAMPLE: GFSK RECEIVER

- What is GFSK?
 - Gaussian frequency shift keying
 - Method for digital transmission based on frequency modulation (FM).
 - To transmit a 1 carrier frequency is slightly increased and to transmit a 0 the frequency is slightly decreased (or vice versa).
 - The transition steps are smoothed by a Gaussian filter.
 - Found in many standards such as Bluetooth and DECT.
 - Proposed version uses parameters not related to any standard.

GFSK RECEIVER DESIGN APPROACH

- Model entire system: transmitter, receiver, and a channel adding noise (AWGN).
- Leave out analog circuitry for upconversion to RF and downconversion back to IF.
- Use IT++ to set up testbench.
- The testbench computes bit error rates (BERs) for different signal-to-noise ratios (SNRs).
- Goal is to preserve BER performance when designing hardware.

Modulated signal has 16 samples per transmitted bit.
IMPLEMENTATION ASPECTS

• Projects focus on designing in Arx.
• Testbenches for generated C++ and VHDL will be provided.
• As C++ and VHDL behave exactly the same, most simulations will be done in C++ (simulation speed for BER simulations is important).
• C++ testbenches make use of IT++, an open-source library for telecom/signal processing:
 – It provides Matlab-style programming in C++, so vectors, matrices, etc. and lots of powerful functions to manipulate them.

GFSK: MODULATION IN FORMULAE

• The modulated signal: \(s(t) = A \cos(\omega_{IF} t + \phi(t)) \)
• where:
 – \(A \) is the constant amplitude
 – \(\omega_{IF} \) is the intermediate frequency (acts as carrier frequency)
 – \(\phi(t) \) is the phase deviation, derived from the bit stream
• The phase deviation:
 \[
 \phi(t) = h \pi \int_{-\infty}^{t} a_i g(\tau - iT) d\tau
 \]
• where:
 – \(h \) is the modulation index
 – \(g(t) \) is a Gaussian-filtered square wave
 – \(a_i \) is 1 for a transmitted 1 and -1 for a transmitted 0.

DEMODULATOR BLOCK DIAGRAM

Digital downconversion is a common operation in digital radio receivers. It is used to shift the carrier frequency of a radio signal (e.g. from IF to baseband) or correct for frequency offset.
• This is done by multiplying an input signal by a sine and cosine of some frequency. Think of the GFSK demodulator.
CORDIC FOR DOWNCONVERSION (2)

\[I(k) = s_{BP}(k) \cos\left(2\pi \frac{f_c}{f_s} k\right) \]
\[Q(k) = -s_{BP}(k) \sin\left(2\pi \frac{f_c}{f_s} k\right) \]

This solution requires look-up table (LUT) and 2 multipliers.

Loehning, et al. Figure 1

CORDIC FOR DOWNCONVERSION (3)

This solution requires just one CORDIC.

Loehning, et al. Figure 2

CORDIC FOR DOWNCONVERSION (4)

IMAGE REJECTION MIXER: "complex" input with in-phase (I) and quadrature (Q) component. CORDIC replaces 4 multipliers!

Loehning, et al. Figure 4