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DATA COMPRESSION
There are two main ways of compressing numeric multidimensional
data:

* Dimensionality reduction:

+ find directions that show
maximal variation using ei-
genvalue techniques and
neglect other directions.

* Clustering or vector quantiza-
tion: use prototypes to encode
a group of points.
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COORDINATE TRANSFORMATIONS
* Linear transformation: y � Wx.
* Note that a single layer neural

network without activation
function also performs a linear
transformation:
y1 � w11x1 � w12x2 � w13x3,
etc.

x1 x2 x3

y1 y2 y3

* Suppose that a coordinate
transformation is given by a
matrix A:

x*
� Ax

y*
� Ay.

* Because x � A�1x*  it follows:
y*

� AWA�1x* or y*
� W*x* ,

with W*
� AWA�1. W* and W

are called similar matrices.

NEURAL NETWORKS

DATA

3

January 11, 2000

EIGENVALUES AND EIGENVECTORS
* For some vectors: Wv � �v.
* Such a vector v is called an eigenvector of W and � is the corre-

sponding eigenvalue.
* Consider the matrix Y the columns of which are eigenvectors of W.

Then: WY� Y�, with � a diagonal matrix.

* Therefore: Y�1WY� Y�1Y� � �. This means that for each trans-
formation W, there is an equivalent transformation by means of a di-
agonal matrix  that uses the eigenvectors as a basis.
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RANDOM VECTORS
* A random vector is a vector whose components are random vari-

ables.
* A random vector X has a probability density function p(X).

* The mean vector is defined as: M � E[X] ��Xp(X)dX (integrate

separately for each vector element).

* And the covariance matrix is defined as: � � E�(X � M)(X � M)T�.
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SAMPLED RANDOM VECTORS
* In practice, the probability density function is unknown and one only

has samples Xk (k � 1, ��� ,N).
* The sample mean vector is defined as:

 M �
1
N
�
N

k�1

Xk.

* The sample covariance matrix is defined as:

 � �
1
N
�
N

k�1

(Xk
� M)(Xk

� M)T
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PRINCIPAL COMPONENTS ANALYSIS (1)
* Abbreviated by PCA; also called Karhunen-Loève transformation.
* Question: given a random vector (a set of sampled vectors), find an

orthogonal base that maximizes the variance along the subsequent
dimensions of the base.

* Goal: achieve dimensionality reduction by leaving out those dimen-
sions that show low variance.
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PRINCIPAL COMPONENTS ANALYSIS (2)
* Consider the sampled vectors  Xk (k � 1, ��� ,N) with M � 0 (if

M � 0, construct a new set of vectors Zk
� Xk

� M).

* We are looking for a unit vector u on which the Xk will be projected.
The projection is:

pk � Xk
� u � XkT

u � uTXk

* The projection’s mean is also zero:

1
N
�
N

k�1

pk �
1
N
�
N

k�1

uTXk
� uT 1

N
�
N

k�1

Xk
� 0.

* The projection’s variance:

�2(u) � 1
N
�
N

k�1

p2�
k

1
N
�
N

k�1

�uTXk��
�

	

XkT
u�




�

� uT�u.
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PRINCIPAL COMPONENTS ANALYSIS (3)
* At the maximal point of variance:

�2(u � �u) � �2(u)

�2(u � �u) � (u � �u)T�(u � �u)

* Ignoring second-order terms:

�2(u � �u) � uT�u � �uT�U � uT��u

* Because � is symmetric, AT�B � BT�A, and therefore:

�2(u � �u) � uT�u � 2�uT�u � �2(u) � 2�uT�u
* It can be concluded that:

�uT�u � 0

* The unit-vector constraint means:

(u � �u)T(u � �u) � 1 or �uTu � 0.
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PRINCIPAL COMPONENTS ANALYSIS (4)
* Using the technique of Lagrange multipliers one gets:

�uT�u � ��uTu � 0 or �u � �u.
* So, the vector u should be an eigenvector of the covariance matrix

�. But:

�2(u) � uT�u � uT�u � �.
* So the largest variance is achieved when the eigenvector corre-

sponding to the largest eigenvalue is chosen.
* Note that the eigenvectors of a symmetrical matrix are orthogonal

and can be chosen as a base.
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PRINCIPAL COMPONENTS ANALYSIS (5)
* Take the eigenvalues in decreasing order (�1 � �2 ���� � �n) and

construct a matrix � � �u1, u2, ��� , un� where each column is an ei-
genvector.

* One can then write: �� � �� � �� where � is a diagonal matrix
with the eigenvalues in decreasing order in the diagonal. This leads
to: ��1�� � �T�� � �.

* So, after a transformation with �, the covariance matrix becomes a
diagonal matrix.
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DIMENSIONALITY REDUCTION (1)
* Expressing a vector X as a lin-

ear combination of the eigen-

vectors gives: X ��
n

i�1

qiui.

* One can approximate X by
leaving out the last n� m
terms of the sum (m� n):

X
^
��

m

i�1

qiui.

* The approximation error is
then:

E � X � X
^
� �

n

i�m�1

qiui.

* Note that the error is always ort-
hogonal to the approximating
vector. This is the principle of
orthogonality.

X
^

X
E

NEURAL NETWORKS

DATA

12

January 11, 2000

DIMENSIONALITY REDUCTION (2)
* Consider the total variance of the approximating vector:

�
m

i�1

�2
i �

�
m

i�1

�i

where �i is the variance in the ith dimension after projection on the
base of eigenvectors �.

* This means that it is indeed a good idea to order the eigenvalues
from large to small and take as many vectors from � as desired.
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DIMENSIONALITY REDUCTION (3)

* Denote: �m
� �u1, ��� , um] .

* X
^
��

m

i�1

qiui, means that the n-dimensional X can now be repre-

sented by an m-dimensional vector Q.

* So: X
^
� �m��

�

�

�

q1
���

qm
��
�

�

�

� �mQ .

* Q is found by: Q � (�m)TX from the original vector X.
For more information on PCA, consult:
[1] Haykin, S., Neural Networks, A Comprehensive Foundation, Prentice Hall International,

Upper Saddle River, New Jersey, Second Edition, (1999).
[2] Jang, J.S.R., C.T. Sun and E. Mizutani, Neuro–Fuzzy and Soft Computing. A Computation-

al Approach to Learning and Machine Intelligence, Prentice Hall, Upper Saddle River, NJ,
(1997).
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HIGH-DIMENSIONAL SPACES
* The sample covariance matrix

when the mean is zero, is de-
fined as:

 � �
1
N
�
N

k�1

Xk(Xk)T

* Create an n� N matrix A com-
posed of the sampled vectors:

 A � �X1,X2, ��� ,XN�

* Then the n� n covariance ma-
trix can also be written as:

 � �
1
N

AAT.

* Finding the eigenvectors of �
for large n is difficult, if not in-
tractable. We consider here
cases where N � n.

* Consider an eigenvector  v of
ATA, an N� N matrix:

 ATAv � �v.

* Premultiply by A:

 AATAv � A�v � �Av.

* So, when v is an eigenvector of
ATA, Av is an eigenvector of �!
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EXAMPLE: EIGENFACES
* It considers images of faces represented by 256� 256� 65536 pix-

els.
* A direct application of the PCA to find the eigenvalues and eigenvec-

tors of the covariance matrix would lead to a calculation involving
65536� 65536 matrix!

* However, using the technique for high-dimensional spaces requires
finding the eigenvectors for an N� N matrix, where N is the number
of samples, e.g. 16.

* The eigenvectors found form a base to represent faces, the so-
called face space.

* The coordinates in face space form a feature vector that can be used
for face recognition.
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CLUSTERING: VECTOR QUANTIZATION
* Clustering is the process of representing a set of N data points Xi

(i � 1, ��� ,N) by a set of M data points Yj ( j � 1, ��� , M, M � N); the
smaller set should be in some sense ‘‘representative’’ of the larger
one.

* Vector quantization is an application of clustering in lossy data com-
pression. The M data points form a codebook that is available at the
receiver side. Given a point Xi to transmit, the sender finds the point
Yj closest to Xi from the codebook and simply sends the index j. The
receiver reconstructs an approximation of the data by retrieving Yj

from the codebook.
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VORONOI DIAGRAMS

* Subdivide the plane in Voronoi regions by perpendicular bisectors
between neighboring pairs of points.
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k-MEANS CLUSTERING ALGORITHM (1)
* It finds k mean vectors that represent a set of data points by means

of k classes.
* The algorithm is as follows:

1) Start with cluster points Yj ( j � 1, ��� , M) and determine the corre-
sponding Voronoi region �j.

2) Determine the centroids of the data points Xi (i � 1, ��� ,N) con-
tained in each Voronoi region:

1
|�j|

�
Xi�Vj

Xi

3) Assign the centroids to the cluster points Yj and repeat from Step
2 until convergence.
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k-MEANS CLUSTERING ALGORITHM (2)
Remarks:
* The algorithm will always converge, but not necessarily to the global

minimum.
* Quality of final solution strongly depends on initial assignment of

cluster points (e.g. random choice, or a choice based on principle
components).

Source:
[3] Moon, T.K. and W.C. Stirling, ”Mathematical Methods  and  Algorithms for Signal Process-

ing”, Prentice Hall, Upper Saddle River, (2000).


