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DATA COMPRESSION

There are two main ways of compressing numeric multidimensional
data:
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* Dimensionality reduction:

+ find directions that show
maximal variation using ei- * Clustering or vector quantiza-
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COORDINATE TRANSFORMATIONS

* Lineartransformation: y = Wx. * Suppose that a coordinate

* Note that a single layer neural transformation is given by a
network without activation matrix A:
function alsp performs a linear x* = AX
transformation: x
= + + y =AY
Y1 = WigXy + WXy T+ WysXs, e
etc. * Because x = A7 x it follows:
Yi Y2 Y3 y = AWA X" or vy = WX,

with W' = AWA™L W' and W
are called similar matrices.
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EIGENVALUES AND EIGENVECTORS

* For some vectors: Wv = Av.

* Such a vector v is called an eigenvector of W and 4 is the corre-
sponding eigenvalue.

* Consider the matrix Y the columns of which are eigenvectors of W.
Then: WY = YA, with A a diagonal matrix.

* Therefore: Y"'WY = Y~1YA = A. This means that for each trans-
formation W, there is an equivalent transformation by means of a di-
agonal matrix that uses the eigenvectors as a basis.
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RANDOM VECTORS

* A random vector is a vector whose components are random vari-
ables.
* A random vector X has a probability density function p(X).

* The mean vectoris defined as: M = E[X] = jXp(X)dX (integrate

separately for each vector element).
* And the covariance matrixis defined as: 2 = E[(X - M)(X — M)T].
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SAMPLED RANDOM VECTORS

* |n practice, the probability density function is unknown and one only
has samples XX (k = 1,...,N).
* The sample mean vector is defined as:
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PRINCIPAL COMPONENTS ANALYSIS (1)

* Abbreviated by PCA,; also called Karhunen-Loéve transformation.

* Question: given a random vector (a set of sampled vectors), find an
orthogonal base that maximizes the variance along the subsequent
dimensions of the base.

* Goal: achieve dimensionality reduction by leaving out those dimen-
sions that show low variance.
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* The sample covariance matrix is defined as:
N
-1 k _ kK _ wnT
3= NZ(X M)(XK — M)
k=1
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PRINCIPAL COMPONENTS ANALYSIS (2)

* Consider the sampled vectors XK (k = 1,..,N) with M = 0 (i
M = 0, construct a new set of vectors ZX = Xk — M).

* \We are looking for a unit vector u on which the XX will be projected.
The projection is:
-
p = XK-u=XKu=uTxk

* The projection’s mean is also zero:

1 N 1 N 1 N

1 -1 Tyk — 71 k _

N2 P=N o uXE=uTg > Xk =0

k=1 k=1 k=1

* The projection’s variance:

N N
o?(u) = %Z p2= % Z(UTX")[X"TU] = u'zu.
k=1 k=1
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PRINCIPAL COMPONENTS ANALYSIS (3)

* At the maximal point of variance:
o%(u + Au) = o?(u)
ou + Au) = (u + Au)™=(u + Au)

* |gnoring second-order terms:

o%(u + Au) = uSu + Au>U + u>A4u
* Because X is symmetric, ATYB = B'IA, and therefore:

03U + Au) = u'Zu + 24u™>u = ou) + 24u"=u
* |t can be concluded that:
AuZu =0

* The unit-vector constraint means:

(u+4uw)(u+4u) = 1or AuTu = 0.
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PRINCIPAL COMPONENTS ANALYSIS (4)

Using the technique of Lagrange multipliers one gets:
Au™>u — A4u'u = Oor Zu = Au.
So, the vector u should be an eigenvector of the covariance matrix

2. But:

o%(u) = u=u = uiu = /.
So the largest variance is achieved when the eigenvector corre-
sponding to the largest eigenvalue is chosen.
Note that the eigenvectors of a symmetrical matrix are orthogonal

and can be chosen as a base.
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PRINCIPAL COMPONENTS ANALYSIS (5)

* Take the eigenvalues in decreasing order (1, > 4, >... > 4;) and
construct a matrix @ = [ul, Ug, orsy un] where each column is an ei-
genvector.

* One can then write: 2@ = @4 = A where A is a diagonal matrix
with the eigenvalues in decreasing order in the diagonal. This leads
to: @~ 3P = o3P = A,

* So, after a transformation with @, the covariance matrix becomes a
diagonal matrix.
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DIMENSIONALITY REDUCTION (1)

* Expressing a vector X as a lin-
ear combination of the eigen-
n

vectors gives: X = zqiui.
i=1

One can approximate X hy

leaving out the last n—m

terms of the sum (m < n):

n m
X = zqiui.
i=1

The approximation error is
then:

E=X-X= z qu;-
i=m+1

Note thatthe erroris always ort-

hogonal to the approximating

vector. This is the principle of

orthogonality.

X

x>
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DIMENSIONALITY REDUCTION (2)

* Consider the total variance of the approximating vector:

m m
>0t =2k
i=1 i=1

where o, is the variance in the ith dimension after projection on the
base of eigenvectors .

* This means that it is indeed a good idea to order the eigenvalues
from large to small and take as many vectors from @ as desired.
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DIMENSIONALITY REDUCTION (3)

* Denote: @™ = [uy, ..., Un].
m

* X = Zqiui, means that the n-dimensional X can now be repre-
i=1

sented by an m-dimensional vector Q.

A n_{ql
* S0r X = @M.
q

= P"Q.

m

* Qis found by: Q = (™ 'X from the original vector X.

For more information on PCA, consult:

[1] Haykin, S., Neural Networks, A Comprehensive Foundation, Prentice Hall International,
Upper Saddle River, New Jersey, Second Edition, (1999).

[2] Jang, J.S.R., C.T. Sun and E. Mizutani, Neuro—Fuzzy and Soft Computing. A Computation-
al Approach to Learning and Machine Intelligence, Prentice Hall, Upper Saddle River, NJ,
(1997).
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HIGH-DIMENSIONAL SPACES

* The sample covariance matrix * Finding the eigenvectors of X~

when the mean is zero, is de- for large n is difficult, if not in-
fined as: tractable. We consider here
1 N cases where N < n.
_1 keyekyT ) .
2= N Z XX * Consider an eigenvector v of
k=1

ATA, an N x N matrix:

* Create an n X N matrix Acom-

posed of the sampled vectors: ATAV = uv.
A =[x1x2,.. xN| * Premultiply by A:
* Thenthe n X ncovariance ma- AATAV = Auv = uAv.

trix can also be written as: ) )
* So, when vis an eigenvector of

— L1 AT
2= NAA ' ATA, Avis an eigenvector of 3!
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EXAMPLE: EIGENFACES

* ltconsidersimages of faces represented by 256 x 256 = 65536pix-
els.

* Adirectapplication of the PCA to find the eigenvalues and eigenvec-
tors of the covariance matrix would lead to a calculation involving
65536 x 65536matrix!

* However, using the technique for high-dimensional spaces requires
finding the eigenvectors foran N x Nmatrix, where Nis the number
of samples, e.g. 16.

* The eigenvectors found form a base to represent faces, the so-
called face space.

* The coordinates in face space form a feature vector that can be used
for face recognition.
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CLUSTERING: VECTOR QUANTIZATION

* Clustering is the process of representing a set of N data points X!
(i = 1,..,N) by a set of M data points Y/ (j = 1,...,M, M < N); the
smaller set should be in some sense “representative” of the larger
one.

* Vector quantizationis an application of clustering in lossy data com-
pression. The M data points form a codebook that is available at the
receiver side. Given a point X! to transmit, the sender finds the point
Yiclosestto X! from the codebook and simply sends the index j. The
receiver reconstructs an approximation of the data by retrieving Y/
from the codebook.
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VORONOI DIAGRAMS

* Subdivide the plane in Voronoi regions by perpendicular bisectors
between neighboring pairs of points.
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k-MEANS CLUSTERING ALGORITHM (1)

It finds k mean vectors that represent a set of data points by means
of k classes.

* The algorithm is as follows:

1) Startwith cluster points Y/ (j = 1,...,M) and determine the corre-
sponding Voronoi region 7.

2) Determine the centroids of the data points X' (i = 1,...,N) con-
tained in each Voronoi region:

LS xi
7] Xievi
3) Assign the centroids to the cluster points Y! and repeat from Step
2 until convergence.
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k-MEANS CLUSTERING ALGORITHM (2)

Remarks:

* The algorithm will always converge, but not necessarily to the global
minimum.

Quality of final solution strongly depends on initial assignment of
cluster points (e.g. random choice, or a choice based on principle
components).

Source:

[3] Moon, T.K. and W.C. Stirling, "Mathematical Methods and Algorithms for Signal Process-
ing”, Prentice Hall, Upper Saddle River, (2000).
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