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UNSUPERVISED LEARNING
* Supervised learning is based on data consisting of example input-

output pairs. Learning amounts to adjusting a system to approxi-
mate as closely as possible the desired output for a given input.

* Unsupervised learning assumes that training is only based on in-
puts. In such a case, one can basically only try to discover similari-
ties and redundancy in the data. This can be used for data compres-
sion both by means of dimensionality reduction and clustering.

* Two types of unsupervised learning exist:
+ Reinforcement learning: weights are updated for pairs of neurons

that are simultaneously active.
+ Competitive learning: weights of those neurons are updated that

have the best response on given inputs.
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PRINCIPAL COMPONENTS ANALYSIS
Summary:
* Abbreviated by PCA; also called Karhunen-Loève transformation.
* Question: given a random vector (a set of sampled vectors), find an

orthonormal base that maximizes the variance along the subse-
quent dimensions of the base.

* The largest variance is achieved when the eigenvector correspond-
ing to the largest eigenvalue of the covariance matrix of the data is
chosen.

* When the eigenvalues are sorted in decreasing order, the corre-
sponding eigenvectors give the dimensions that are of decreasing
importance.
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HEBBIAN LEARNING (1)
* Already encountered in Hopfield associative memories.
* Principle: increase the weight between two neurons if these two neu-

rons fire simultaneously: reinforcement learning.

x1 xN

y

���

w1 wN

* Weight update rule:
wj(t � 1) � wj(t) � �yxj

* Assuming that all neuron outputs are positive, the weights will con-
tinually grow larger (a solution for this problem follows later).
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HEBBIAN LEARNING (2)
* Assume that there is a single

linear neuron described by:

y ��
N

i�1

wixi � wTx � xTw

* Then the weight update can be
written as:

�wj � �yxj � ��
N

i�1

wixixj

* Or, in vector notation:

�w � �xy � �xxTw
* The patterns in the training set

are the vectors xp, p � 1, ��� , Q.

* The average update due to all
patterns is (C is the correlation
matrix; the covariance matrix if
the xp have mean 0):

�w � �
1
Q
�
Q

p�1

xpxpTw � �Cw

* Claim: the weight vector will
converge towards the eigen-
vector belonging to the largest
eigenvalue of the correlation
matrix (first principal compo-
nent of the data)!
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LINEAR-SYSTEMS EXPLANATION
* The update rule can be seen as

a differential equation:

d
dt

w � �Cw

* The solution of this equation
can be found by first applying a
coordinate transformation (T is
a matrix of the eigenvectors of
C):

 w*
� T�1w

* Then, the solution is:

 w*(t) �
�
�
�
�
�
�

�

�

w*
1(0)e�1t

�

w*
N(0)e�Nt

�
�
�
�
�
�

�

�

; w(t) � Tw*(t)

* Because C is symmetric and
positive semidefinite, all eigen-
values are positive. So, the
system is unstable. w(t) will as-
ymptotically align with the ei-
genvector associated with the
largest eigenvalue.
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GRADIENT-DESCENT EXPLANATION
* Consider the objective function:

J(w) � 1
2
�
Q

p�1

�
�

�
xpTw�

�

�

2

* This function tries to find the vector w which optimally projects to the
vectors in the training set, in other words the first principal compo-
nent.

* The  weights that optimize the objective function can be found by the
gradient-descent method:

�wj � �
�J
�wj

� �
��
�
�

�

�

�
Q

i�1

xpTw��
�
�

�

�

xj � �yxj

* However, this update rule is exactly the Hebbian learning rule!
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WEIGHT-VECTOR NORMALIZATION (1)
* In order to prevent that the weight vector grows indefinitely, one can

normalize its size to 1 at each update:

wj(t � 1) �
wj(t) � �yxj

�
N

j�1

�wj(t) � �yxj
�

2

�

* When the learning rate � is sufficiently small, second and higher-or-
der terms can be neglected:

�
N

j�1

�wj(t) � �yxj
�

2
��

N

j�1

�
�

	
w2

j (t) � 2�yxjwj(t)�



�
� 1��

N

j�1

2�yxjwj(t)

� 1� 2�y2
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WEIGHT-VECTOR NORMALIZATION (2)
* Continuing the approximation, one gets:

1
1� 2�y2�

�
1

1� �y2
� 1� �y2

* So, the update rule becomes:

wj(t � 1) � �wj(t) � �yxj
��1� �y2� � wj(t) � �y�xj � ywj(t)�

* This rule looks very much like the original rule with the difference that
the input xj has been replaced by xj� � xj � ywj(t). xj� is called the
effective input.
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MULTIPLE NEURONS (1)
* Consider a two-layer feedforward network with N inputs and M out-

puts (M � N). All neurons are linear:

yi ��
N

j�1

wij(t)xj, i � 1, ��� , M

* The rule for updating weights is different for each neuron:

wij(t � 1) � wij(t) � �yi




	




xj ��
i

k�1

ykwkj(t)




�

�

, i � 1, ��� , M

* In vector form:

�wi � �yi




	




x ��
i

k�1

ykwk(t)




�

�

� �yi
�x*

� yiwi(t)�, x
*
� x ��

i�1

k�1

ykwk(t)
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MULTIPLE NEURONS (2)

* So: �wi � �yi
�x*

� yiwi(t)�, x
*
� x ��

i�1

k�1

ykwk(t)

* When i � 1, x*
� x which corresponds to the single-neuron case

investigated before. The weights of the first neuron will converge to
the first principal component.

* Consider i � 2 and assume that the weights of the first neuron have
converged to their final value. Then, x*

� x � y1w1(t), which means
that the neuron sees an input from which the first principal compo-
nent has been removed (y1 is exactly the projection of x on w1(t)).
Therefore, the weights w2(t)  will converge to the second principal
component from the training set.
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MULTIPLE NEURONS (3)
* Following a similar reasoning, it is not difficult to conclude that the

network weights will converge to the M largest principal components
of the network.

* In reality the weights will not converge one by one but simultaneous-
ly.

* This method of computing principle components can be far more ef-
ficient than the computation via eigenvectors for large N.
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 SIMPLE COMPETITIVE LEARNING (1)
* Consider again a two-layer feedforward network with N inputs and

M outputs.
* The neurons are unconventional: instead of computing a weighted

sum followed by the application of an activation function, they com-
pute the distance between the weight vector and the input vector
(e.g. the Euclidean distance):

yi �
�wi � x�, i � 1, ��� , M

* The neuron that has the minimal output (whose weight vector is clos-
est to the input) is called the winning neuron.

* Only the weight vector of the winning neuron is updated according
to:

wi(t � 1) � wi(t) � �(x � wi)
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SIMPLE COMPETITIVE LEARNING (2)
* The effect of this type of learning is that the weight vectors move to-

wards clusters of input vectors.
* After convergence some kind of clustering has been achieved

(compare this approach to the k-means clustering algorithm). The
prototypes are given by the weight vectors.

* The algorithm has the disadvantage that an optimal clustering can-
not always be found: weights of neurons that never become winning
neurons are never modified. These are the so-called dead neurons.
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KOHONEN LEARNING (1)
* Self-organizing map: a two-layered network (with an input and an

output layer) in which the neurons have positions with respect to
each other. Examples:

y1 y2
���y3 one-dimensional arrangement

y11 y12

y21 y22

���

���

� �

two-dimensional arrangement
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KOHONEN LEARNING (2)
* Linear and two-dimensional arrangements of neurons are often

used. However, higher-dimensional arrangements or embeddings
in non-Euclidean spaces are also possible.

* Because neurons have positions, a distance d(i, j) (i, j � 1, ��� , M)
between pairs of neurons can be defined.

* The computation performed is similar to simple competitive learn-
ing. Determine first the winning neuron k:

k � arg max
M

i�1
�wi � w�.

* The rule for updating weights is:
wi(t � 1) � wi(t) � �h(k, i)(x � wi)

* h(k, i) is called a neighborhood function. It should decrease with in-
creasing distance d(k, i).
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KOHONEN LEARNING (3)
* Using a neighborhood function eliminates dead neurons.

* A frequently used function for the neighborhood function is a Gaus-
sian:

h(i, j) � exp��
�

�

�d(i, j)
2�2

��

�

�

* For reasons of sufficient exploration of the solution space on one
hand and convergence on the other, it is a good idea to make � time
dependent with large values at the beginning and small ones at the
end.

* One of the main applications is clustering and vector quantization.
During the training, the prototype points are determined. Inputs of-
fered to the network later on are mapped to one of the classes found
during training, viz. the class associated with the winning neuron.
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APPLICATION TO TSP
* Given is a set of cities with coordinates xp

� (xp
1
, xp

2
), p � 1, ��� , Q.

* The goal is to visit all cities once and return to the original one using
the shortest possible tour.

* Use a Kohonen self-organizing map that is circular (i.e. a linear ar-
rangement in which the last neuron is a direct neighbor of the first).

* There are as many neurons as
there are cities. The algorithm
may add new neurons to break
ties.

* Eventually, the weights will be
mapped on city coordinates.

* There are, however, better
ways to solve TSP.

y1

y2

yM
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TERMINOLOGY
* Clearly distinguish:

+ Clustering (sometimes also called vector quantization): the pro-
cess of trying to find prototypes in a set of unlabeled data.

+ Classification: try to determine to which of the predetermined sub-
sets a data item belongs.

* Clustering is normally applied to a ‘‘fresh’’ set of data.
* A classifier is normally built by finding appropriate parameter values

derived from a training set. Once the parameter values have been
fixed, it is used for classifying new data.
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VORONOI DIAGRAMS (REMINDER)

* Subdivide the plane in Voronoi regions by perpendicular bisectors
between neighboring pairs of points.
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LEARNING VECTOR QUANTIZATION (1)
* Learning vector quantization (LVQ) can be applied to build classifi-

ers. It uses a labeled training set: the class to which a data item be-
longs is known in advance. The main idea is to use clustering tech-
niques first and then use the labels to modify cluster boundaries.

* LVQ is a supervised learning method.
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LEARNING VECTOR QUANTIZATION (2)
The algorithm:
* Apply clustering ignoring the class labels, e.g. by using the Kohonen

method or k-means clustering. The result is a set of prototypes or
centroids wi, i � 1, ��� , M. The centroids define Voronoi regions �i.

* Assign a class to each centroid using voting: the class to which the
majority of points in �i belongs determines the class of wi.

* Repetitively present inputs  xp, p � 1, ��� , Q from the training set. De-
note the class of xp by �(xp) and the class of wi by �(wi).

+ Consider wi for which xp
� �

i. If �(xp) � �(wi):

wi(t � 1) � wi(t) � �(xp
� wi) (move centroid closer to xp).

+ Otherwise:
wi(t � 1) � wi(t) � �(xp

� wi) (move centroid away from xp).
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FURTHER READING
* A thorough proof of the convergence of the Hebbian learning rule for

a single neuron towards the first principle component is given in [1].
* An explanation of the multiple-output PCA neural network can also

be found in [1].
* Many of the issues of this lecture are also covered in [2].
[1] Haykin, S., Neural Networks, A Comprehensive Foundation, Prentice Hall International,

Upper Saddle River, New Jersey, Second Edition, (1999).

[2] Jang, J.S.R., C.T. Sun and E. Mizutani, Neuro–Fuzzy and Soft Computing. A Computation-
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(1997).


