
NEURAL NETWORKS

UNSUPERVISED LEARNING

1

February 11, 2000Sabih H. Gerez, University of Twente

UNSUPERVISED LEARNING
* Supervised learning is based on data consisting of example input-

output pairs. Learning amounts to adjusting a system to approxi-
mate as closely as possible the desired output for a given input.

* Unsupervised learning assumes that training is only based on in-
puts. In such a case, one can basically only try to discover similari-
ties and redundancy in the data. This can be used for data compres-
sion both by means of dimensionality reduction and clustering.

* Two types of unsupervised learning exist:
+ Reinforcement learning: weights are updated for pairs of neurons

that are simultaneously active.
+ Competitive learning: weights of those neurons are updated that

have the best response on given inputs.

NEURAL NETWORKS

UNSUPERVISED LEARNING

2

February 11, 2000Sabih H. Gerez, University of Twente

PRINCIPAL COMPONENTS ANALYSIS
Summary:
* Abbreviated by PCA; also called Karhunen-Loève transformation.
* Question: given a random vector (a set of sampled vectors), find an

orthonormal base that maximizes the variance along the subse-
quent dimensions of the base.

* The largest variance is achieved when the eigenvector correspond-
ing to the largest eigenvalue of the covariance matrix of the data is
chosen.

* When the eigenvalues are sorted in decreasing order, the corre-
sponding eigenvectors give the dimensions that are of decreasing
importance.

NEURAL NETWORKS

UNSUPERVISED LEARNING

3

February 11, 2000Sabih H. Gerez, University of Twente

HEBBIAN LEARNING (1)
* Already encountered in Hopfield associative memories.
* Principle: increase the weight between two neurons if these two neu-

rons fire simultaneously: reinforcement learning.

x1 xN

y

���

w1 wN

* Weight update rule:
wj(t � 1) � wj(t) � �yxj

* Assuming that all neuron outputs are positive, the weights will con-
tinually grow larger (a solution for this problem follows later).

NEURAL NETWORKS

UNSUPERVISED LEARNING

4

February 11, 2000Sabih H. Gerez, University of Twente

HEBBIAN LEARNING (2)
* Assume that there is a single

linear neuron described by:

y ��
N

i�1

wixi � wTx � xTw

* Then the weight update can be
written as:

�wj � �yxj � ��
N

i�1

wixixj

* Or, in vector notation:

�w � �xy � �xxTw
* The patterns in the training set

are the vectors xp, p � 1, ��� , Q.

* The average update due to all
patterns is (C is the correlation
matrix; the covariance matrix if
the xp have mean 0):

�w � �
1
Q
�
Q

p�1

xpxpTw � �Cw

* Claim: the weight vector will
converge towards the eigen-
vector belonging to the largest
eigenvalue of the correlation
matrix (first principal compo-
nent of the data)!

NEURAL NETWORKS

UNSUPERVISED LEARNING

5

February 11, 2000Sabih H. Gerez, University of Twente

LINEAR-SYSTEMS EXPLANATION
* The update rule can be seen as

a differential equation:

d
dt

w � �Cw

* The solution of this equation
can be found by first applying a
coordinate transformation (T is
a matrix of the eigenvectors of
C):

 w*
� T�1w

* Then, the solution is:

 w*(t) �
�
�
�
�
�
�

�

�

w*
1(0)e�1t

�

w*
N(0)e�Nt

�
�
�
�
�
�

�

�

; w(t) � Tw*(t)

* Because C is symmetric and
positive semidefinite, all eigen-
values are positive. So, the
system is unstable. w(t) will as-
ymptotically align with the ei-
genvector associated with the
largest eigenvalue.

NEURAL NETWORKS

UNSUPERVISED LEARNING

6

February 11, 2000Sabih H. Gerez, University of Twente

GRADIENT-DESCENT EXPLANATION
* Consider the objective function:

J(w) � 1
2
�
Q

p�1

�
�

�
xpTw�

�

�

2

* This function tries to find the vector w which optimally projects to the
vectors in the training set, in other words the first principal compo-
nent.

* The weights that optimize the objective function can be found by the
gradient-descent method:

�wj � �
�J
�wj

� �
��
�
�

�

�

�
Q

i�1

xpTw��
�
�

�

�

xj � �yxj

* However, this update rule is exactly the Hebbian learning rule!

NEURAL NETWORKS

UNSUPERVISED LEARNING

7

February 11, 2000Sabih H. Gerez, University of Twente

WEIGHT-VECTOR NORMALIZATION (1)
* In order to prevent that the weight vector grows indefinitely, one can

normalize its size to 1 at each update:

wj(t � 1) �
wj(t) � �yxj

�
N

j�1

�wj(t) � �yxj
�

2

�

* When the learning rate � is sufficiently small, second and higher-or-
der terms can be neglected:

�
N

j�1

�wj(t) � �yxj
�

2
��

N

j�1

�
�

	
w2

j (t) � 2�yxjwj(t)�

�
� 1��

N

j�1

2�yxjwj(t)

� 1� 2�y2

NEURAL NETWORKS

UNSUPERVISED LEARNING

8

February 11, 2000Sabih H. Gerez, University of Twente

WEIGHT-VECTOR NORMALIZATION (2)
* Continuing the approximation, one gets:

1
1� 2�y2�

�
1

1� �y2
� 1� �y2

* So, the update rule becomes:

wj(t � 1) � �wj(t) � �yxj
��1� �y2� � wj(t) � �y�xj � ywj(t)�

* This rule looks very much like the original rule with the difference that
the input xj has been replaced by xj� � xj � ywj(t). xj� is called the
effective input.

NEURAL NETWORKS

UNSUPERVISED LEARNING

9

February 11, 2000Sabih H. Gerez, University of Twente

MULTIPLE NEURONS (1)
* Consider a two-layer feedforward network with N inputs and M out-

puts (M � N). All neurons are linear:

yi ��
N

j�1

wij(t)xj, i � 1, ��� , M

* The rule for updating weights is different for each neuron:

wij(t � 1) � wij(t) � �yi

	

xj ��
i

k�1

ykwkj(t)

�

�

, i � 1, ��� , M

* In vector form:

�wi � �yi

	

x ��
i

k�1

ykwk(t)

�

�

� �yi
�x*

� yiwi(t)�, x
*
� x ��

i�1

k�1

ykwk(t)

NEURAL NETWORKS

UNSUPERVISED LEARNING

10

February 11, 2000Sabih H. Gerez, University of Twente

MULTIPLE NEURONS (2)

* So: �wi � �yi
�x*

� yiwi(t)�, x
*
� x ��

i�1

k�1

ykwk(t)

* When i � 1, x*
� x which corresponds to the single-neuron case

investigated before. The weights of the first neuron will converge to
the first principal component.

* Consider i � 2 and assume that the weights of the first neuron have
converged to their final value. Then, x*

� x � y1w1(t), which means
that the neuron sees an input from which the first principal compo-
nent has been removed (y1 is exactly the projection of x on w1(t)).
Therefore, the weights w2(t) will converge to the second principal
component from the training set.

NEURAL NETWORKS

UNSUPERVISED LEARNING

11

February 11, 2000Sabih H. Gerez, University of Twente

MULTIPLE NEURONS (3)
* Following a similar reasoning, it is not difficult to conclude that the

network weights will converge to the M largest principal components
of the network.

* In reality the weights will not converge one by one but simultaneous-
ly.

* This method of computing principle components can be far more ef-
ficient than the computation via eigenvectors for large N.

NEURAL NETWORKS

UNSUPERVISED LEARNING

12

February 11, 2000Sabih H. Gerez, University of Twente

 SIMPLE COMPETITIVE LEARNING (1)
* Consider again a two-layer feedforward network with N inputs and

M outputs.
* The neurons are unconventional: instead of computing a weighted

sum followed by the application of an activation function, they com-
pute the distance between the weight vector and the input vector
(e.g. the Euclidean distance):

yi �
�wi � x�, i � 1, ��� , M

* The neuron that has the minimal output (whose weight vector is clos-
est to the input) is called the winning neuron.

* Only the weight vector of the winning neuron is updated according
to:

wi(t � 1) � wi(t) � �(x � wi)

NEURAL NETWORKS

UNSUPERVISED LEARNING

13

February 11, 2000Sabih H. Gerez, University of Twente

SIMPLE COMPETITIVE LEARNING (2)
* The effect of this type of learning is that the weight vectors move to-

wards clusters of input vectors.
* After convergence some kind of clustering has been achieved

(compare this approach to the k-means clustering algorithm). The
prototypes are given by the weight vectors.

* The algorithm has the disadvantage that an optimal clustering can-
not always be found: weights of neurons that never become winning
neurons are never modified. These are the so-called dead neurons.

NEURAL NETWORKS

UNSUPERVISED LEARNING

14

February 11, 2000Sabih H. Gerez, University of Twente

KOHONEN LEARNING (1)
* Self-organizing map: a two-layered network (with an input and an

output layer) in which the neurons have positions with respect to
each other. Examples:

y1 y2
���y3 one-dimensional arrangement

y11 y12

y21 y22

���

���

� �

two-dimensional arrangement

NEURAL NETWORKS

UNSUPERVISED LEARNING

15

February 11, 2000Sabih H. Gerez, University of Twente

KOHONEN LEARNING (2)
* Linear and two-dimensional arrangements of neurons are often

used. However, higher-dimensional arrangements or embeddings
in non-Euclidean spaces are also possible.

* Because neurons have positions, a distance d(i, j) (i, j � 1, ��� , M)
between pairs of neurons can be defined.

* The computation performed is similar to simple competitive learn-
ing. Determine first the winning neuron k:

k � arg max
M

i�1
�wi � w�.

* The rule for updating weights is:
wi(t � 1) � wi(t) � �h(k, i)(x � wi)

* h(k, i) is called a neighborhood function. It should decrease with in-
creasing distance d(k, i).

NEURAL NETWORKS

UNSUPERVISED LEARNING

16

February 11, 2000Sabih H. Gerez, University of Twente

KOHONEN LEARNING (3)
* Using a neighborhood function eliminates dead neurons.

* A frequently used function for the neighborhood function is a Gaus-
sian:

h(i, j) � exp��
�

�

�d(i, j)
2�2

��

�

�

* For reasons of sufficient exploration of the solution space on one
hand and convergence on the other, it is a good idea to make � time
dependent with large values at the beginning and small ones at the
end.

* One of the main applications is clustering and vector quantization.
During the training, the prototype points are determined. Inputs of-
fered to the network later on are mapped to one of the classes found
during training, viz. the class associated with the winning neuron.

NEURAL NETWORKS

UNSUPERVISED LEARNING

17

February 11, 2000Sabih H. Gerez, University of Twente

APPLICATION TO TSP
* Given is a set of cities with coordinates xp

� (xp
1
, xp

2
), p � 1, ��� , Q.

* The goal is to visit all cities once and return to the original one using
the shortest possible tour.

* Use a Kohonen self-organizing map that is circular (i.e. a linear ar-
rangement in which the last neuron is a direct neighbor of the first).

* There are as many neurons as
there are cities. The algorithm
may add new neurons to break
ties.

* Eventually, the weights will be
mapped on city coordinates.

* There are, however, better
ways to solve TSP.

y1

y2

yM

NEURAL NETWORKS

UNSUPERVISED LEARNING

18

February 11, 2000Sabih H. Gerez, University of Twente

TERMINOLOGY
* Clearly distinguish:

+ Clustering (sometimes also called vector quantization): the pro-
cess of trying to find prototypes in a set of unlabeled data.

+ Classification: try to determine to which of the predetermined sub-
sets a data item belongs.

* Clustering is normally applied to a ‘‘fresh’’ set of data.
* A classifier is normally built by finding appropriate parameter values

derived from a training set. Once the parameter values have been
fixed, it is used for classifying new data.

NEURAL NETWORKS

UNSUPERVISED LEARNING

19

February 11, 2000Sabih H. Gerez, University of Twente

VORONOI DIAGRAMS (REMINDER)

* Subdivide the plane in Voronoi regions by perpendicular bisectors
between neighboring pairs of points.

NEURAL NETWORKS

UNSUPERVISED LEARNING

20

February 11, 2000Sabih H. Gerez, University of Twente

LEARNING VECTOR QUANTIZATION (1)
* Learning vector quantization (LVQ) can be applied to build classifi-

ers. It uses a labeled training set: the class to which a data item be-
longs is known in advance. The main idea is to use clustering tech-
niques first and then use the labels to modify cluster boundaries.

* LVQ is a supervised learning method.

NEURAL NETWORKS

UNSUPERVISED LEARNING

21

February 11, 2000Sabih H. Gerez, University of Twente

LEARNING VECTOR QUANTIZATION (2)
The algorithm:
* Apply clustering ignoring the class labels, e.g. by using the Kohonen

method or k-means clustering. The result is a set of prototypes or
centroids wi, i � 1, ��� , M. The centroids define Voronoi regions �i.

* Assign a class to each centroid using voting: the class to which the
majority of points in �i belongs determines the class of wi.

* Repetitively present inputs xp, p � 1, ��� , Q from the training set. De-
note the class of xp by �(xp) and the class of wi by �(wi).

+ Consider wi for which xp
� �

i. If �(xp) � �(wi):

wi(t � 1) � wi(t) � �(xp
� wi) (move centroid closer to xp).

+ Otherwise:
wi(t � 1) � wi(t) � �(xp

� wi) (move centroid away from xp).

NEURAL NETWORKS

UNSUPERVISED LEARNING

22

February 11, 2000Sabih H. Gerez, University of Twente

FURTHER READING
* A thorough proof of the convergence of the Hebbian learning rule for

a single neuron towards the first principle component is given in [1].
* An explanation of the multiple-output PCA neural network can also

be found in [1].
* Many of the issues of this lecture are also covered in [2].
[1] Haykin, S., Neural Networks, A Comprehensive Foundation, Prentice Hall International,

Upper Saddle River, New Jersey, Second Edition, (1999).

[2] Jang, J.S.R., C.T. Sun and E. Mizutani, Neuro–Fuzzy and Soft Computing. A Computation-
al Approach to Learning and Machine Intelligence, Prentice Hall, Upper Saddle River, NJ,
(1997).

