

3

SINGLE LINEAR NEURON TRAINING (2)

* Solve using gradient search:

$$w_k^{new} \leftarrow w_k^{old} - \eta \frac{\partial}{\partial w_k} E(w).$$

* Iterate until improvements become "small", e.g.:

$$\sum_{k=1}^{n} \left\| w_k^{new} - w_k^{old} \right\| < \epsilon$$

* The derivative needed to update the weights:

$$\frac{\partial}{\partial w_k} E(\mathbf{w}) = \frac{\partial}{\partial y} E(\mathbf{w}) \frac{\partial}{\partial w_k} y = -\sum_{p=1}^N (d^p - y(x^p)) x_p^p$$

* The training rule is called the *Widrow-Hoff* learning rule.

January 13, 2000

NEURAL NETWORKS

OPTIMIZATION

SINGLE LINEAR NEURON TRAINING (1)

Problem description:

* Consider a single linear neuron with output *y* and *n* inputs $x_1, ..., x_n$. Its behavior is given by:

$$y(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} = \sum_{k=1}^{n} w_k x_k$$

(all inputs are represented by a vector x, all weights by a vector w).

- * The desired behavior is given by input-output pairs (x^p, d^p) , $1 \le p \le N$.
- * Goal is to find values for the weight parameters that minimize the error:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{p=1}^{N} (d^p - y(\mathbf{x}^p))^2.$$

OPTIMIZATION

4

METHOD OF LAGRANGE MULTIPLIERS

- * Suppose that one wants to know the minimum of a function F(x) subject to a constraint G(x) = 0.
- * Construct a new function $\hat{F}(x,\lambda) = F(x) + \lambda G(x)$.
- * The solution sought is: $\min_{x \neq \lambda} \hat{F}(x, \lambda)$.
- * Because $\hat{F}(x,\lambda)$ is minimal with respect to λ : $\frac{\partial}{\partial\lambda}\hat{F}(x,\lambda) = G(x) = 0$, the constraint is satisfied; on the other hand, because G(x) = 0, any nonzero value can be chosen for λ .

January 13, 2000

2

NEURAL NETWORKS

5

7

OPTIMAL CONTROL

Problem definition:

* There is a dynamical system with excitation described by:

$$\frac{d}{dt}\boldsymbol{x} = \boldsymbol{F}(\boldsymbol{x}, \boldsymbol{u})$$

- Its initial state x(0) is known.
- * The goal is to find time functions for the excitations u that minimize an objective function for the time period $0 < t \le T$.
- * The objective function *J* is composed of two terms, one is a function of the final state *x*(*T*) and the other is a function integrated over time:

$$J = \psi[\mathbf{x}(T)] + \int_{0}^{T} \ell(\mathbf{u}, \mathbf{x}) dt$$
January 13, 2000

OPTIMIZATION

THE EULER-LAGRANGE METHOD (2)

* Define the *Hamiltonian* as: $H(\lambda, x, u) = \lambda^T F(x, u) + \ell(u, x)$. This leads to the expression for the objective function:

$$\hat{J} = \psi[\mathbf{x}(T)] + \int_{0}^{T} \left[H(\lambda, \mathbf{x}, \mathbf{u}) - \lambda^{T} \frac{d}{dt} \mathbf{x} \right] dt$$

* See book for a derivation of the *conditions of optimality*. They are:

OPTIMIZATION

THE EULER-LAGRANGE METHOD (1)

- * Provides a solution to the optimal control problem.
- ^{*} It uses Lagrange multipliers $\lambda(t)$ (a vector of time functions) to construct an objective function \hat{J} that satisfies the dynamical system constraint:

$$\hat{J} = J - \int_{t=0}^{T} \lambda^{T} [\frac{d}{dt} \mathbf{x} - F(\mathbf{x}, \mathbf{u})] dt$$
$$\hat{J} = \psi[\mathbf{x}(T)] + \int_{0}^{T} \ell(\mathbf{u}, \mathbf{x}) dt - \int_{t=0}^{T} \lambda^{T} [\frac{d}{dt} \mathbf{x} - F(\mathbf{x}, \mathbf{u})] dt$$

January 13, 2000

6