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OPTIMIZATION PROBLEMS
An instance I � (F,c), where:
* F is the set of feasible solutions, and
* c is a cost  function, assigning a cost value to each feasible solution;

c : F � R

The solution of the optimization problem is the feasible solution with op-
timal (minimal/maximal) cost.

A feasible solution can be described by specific settings of problem pa-
rameters or variables.
* If the variables can assume discrete values, the problem is called a

combinatorial optimization problem.
* If the variables are continuous, the problem is a continuous opti-

mization problem.
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COMPUTATIONAL COMPLEXITY (1)
* Computational complexity: an abstract measure of the time and

space necessary to execute an algorithm as function of its ‘‘input
size’’.

* Time complexity is expressed in elementary computational steps.
For example: an addition (or multiplication, pointer indirection, etc.)
is one step.

* Space complexity is expressed in memory locations (e.g. bits, bytes,
words).

* Big-O notation:
f � O(g), if two constants n0 and K can be found such that:

�n � n0 : f (n) � K � g(n)

Example:

2n2
� O(n2)
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COMPUTATIONAL COMPLEXITY (2)
Relevant growth rates for the time complexity:
* polynomial vs. exponential
* linear vs. quadratic
* sublinear
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INTRACTABLE PROBLEMS
A complexity class that is often encountered in optimization, is the class
of NP-complete (NP = nondeterministic polynomial) problems. A pre-
cise definition involves several subtle issues. Here, it suffices to know
that for these problems only exponential-time algorithms are known
and that polynomial-time algorithms are very unlikely to be found.
Problems for which only exponential-time algorithms are known, are
called intractable. For intractable problems:
* Exact solutions can only be found when the problem size is small.
* For larger problem sizes, one can use:

+ approximation algorithms: they can e.g. guarantee a solution
within 20% of the optimum.

+ heuristics: nothing can be said a priori about the quality of the so-
lution. Heuristics could be based on computational intelligence.
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THE TRAVELING SALESMAN
PROBLEM (1)

* A typical example of an NP-complete problem.

PROBLEM DEFINITION:
Find the shortest tour that visit all cities in a given set exactly once.
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THE TRAVELING SALESMAN
PROBLEM (2)
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COMPUTABILITY
* A function is called computable if it can be computed by a Turing ma-

chine.
* A Turing machine is a theoretical model of a computer; it consists of

a tape (data memory), a simple instruction set (read or write a bit on
the tape, advance tape, test current bit value) and a program.

* Any electronic computer can be emulated by a Turing machine at the
cost of a polynomial-time overhead. So, problems that are intracta-
ble for a Turing machine will be intractable for any other computer.

* Some problems are incomputable: no program can be written to
solve it, not even one with an exponential or higher time complexity
(e.g. the halting problem).

* Some people (e.g. Roger Penrose) claim that computation is insuffi-
cient to model the brain.
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COMPUTATIONAL INTELLIGENCE
* Special case of artificial intelligence (AI), nowadays often called

classical AI.
* Classical AI is more oriented towards models of reasoning. Think of

expert systems, playing games like chess, etc. A medical expert
system will e.g. assist a doctor in determining a patient’s disease by
starting from symptoms and using if-then-else-type rules.

* Computational intelligence (CI) refers to techniques inspired by phe-
nomena in nature. It is also called soft computing.

* CI is much more involved with numerical computations rather than
symbolic ones. It is, in a sense, closer to signal processing/electrical
engineering.
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COMPUTATION IN LIFELESS NATURE
* Question in book: does a table execute an algorithm because it orga-

nizes its atoms in some specific way?
* There is a parallel between the tendency of physical systems to

move towards a state of minimal energy and optimization problems.
Simulated annealing is based on this principle.

* Learning in neural networks can be based on simulated annealing.
These type of neural networks are called Boltzmann machines.
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SIMULATED ANNEALING
Inspired by material cooling down slowly and settling in minimal energy
state.

Analogies:
* Energy � cost function
* Molecule movement � movement in search space.
* Temperature � control parameter T.

Move strategy for f and g � m(f):
* �c � c(g) � c(f)

* If �c � 0, always accept transition to g.

* If �c � 0, accept with probability e
��c

T .
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SIMULATED ANNEALING: CODE
int accept(struct feasible solution f, g)

f

float �c;

�c c(g) - c(f);
if (�c � 0)

return 1;
else return (e

-�c

T > random(1));

g

simulated annealing()

f

struct feasible solution f, g;
float T;

f initial solution();
do f

do f
g “some element of N(f)”;

if (accept(f, g))

f g

while (!thermal equilibrium());

T new temperature(T);
while (!stop());
“report f”;

g
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COMPUTATION IN LIVING NATURE (1)
Three types of developments take place in living nature1:
1) Phylogeny, the temporal evolution of the genetic code.

+  The genetic code changes from generation to generation through
mutation (asexual reproduction) and recombination (sexual re-
production).

+ A survival-of-the-fittest principle leads to improved performance
of the species and adaptation to the environment.

+ The principle is used in the branch of computational intelligence
called evolutionary computation (EC). A well-known EC tech-
nique is the use of genetic algorithms (GAs).

 [1] Mange, D. and M. Tomassini (Eds.), Bio-Inspired Computing Machines, Towards Novel
Computational Architectures, Presses Polytechniques et Universitaires Romandes, Lau-
sanne, (1998).
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COMPUTATION IN LIVING NATURE (2)
2) Ontogeny, the growth of a multicellular organism from a single cell,

including differentiation. This phenomenon was a source of inspira-
tion for hardware evolution.

3) Epigenesis, the ability of an organism to modify parts of its system
as a result of interaction with its environment. Think e.g. of the nerv-
ous system and the immune system. This aspect of natural com-
putation has clearly led to neural networks.

Additionally, there is the actual “information processing”, the use of the
nervous system in various situations (from reflexes, to well-planned be-
havior).
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GENETIC ALGORITHMS
Principles:
* Based on analogy with evolution process in nature.
* Works with a population of feasible solutions, instead of a single fea-

sible solution.
* Each feasible solution is encoded in a linear data structure, usually

a bit string, called a chromosome.
* Two parent chromosomes are combined by crossover to form one/

two child chromosomes.
* Optimization based on ‘‘survival of the fittest’’: prefer parents with

better costs for mating.
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GENETIC ALGORITHMS: ILLUSTRATION

First parent

Second parent

0 1 0 1 1 0 0 1

1 0 0 0 0 1 1 0

First child

Second child

0 1 0 1 1

0 0 11 0 0 0 0

1 1 0
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GENETIC ALGORITHMS: CODE
genetic()

f

pop ;;
for (i 1; i � pop size; i i+ 1)

pop pop [ f“chromosome of random feasible solution”g;
do f

newpop ;;
for (i 1; i � pop size; i i+ 1) f

parent1 select(pop);
parent2 select(pop);
child crossover(parent1, parent2);
newpop newpop[ fchildg;

g

pop newpop;

g while (!stop());
“report best solution”;

g
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NATURAL NEURONS (1)

axon

dendrites

cell body

synapses
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NATURAL NEURONS (2)
* The human brain has about 1011 neurons.

* Each neuron connects to about 104 other neurons.
* A cell body has a diameter of about 10 microns; an axon can be as

long as 1 cm.
* Signals from one neuron to another are carried by neurotransmitters

which result in a charge transfer.
* A neuron will spike when its charge passes some value. The spiking

rate is a measure of neuron activity.
* A key issue in learning is the modification in signal transfer degree

at a synapse.
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ARTIFICIAL NEURONS
A neuron is modeled by an ele-
ment:

* It has an output value in a limit-
ed range, e.g. from –1 to 1 or
from 0 to 1; sometimes the out-
put can only have a discrete
value (0 and 1); note that the
spiking rate is modeled by a
level.

* It takes its inputs from other
neuron outputs or from external
inputs;

* Its output is calculated as the

weighted sum of the inputs that
is passed through a limiting (or
activation) function f:

xi � f(vi) vi ��

j

wijxj

xi

xa wia

xb

xc wic

wib
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LIMITING FUNCTION EXAMPLES
* Threshold function:

f (v) �
�

�

�

�

�

�1, if v � 0

1, if v � 0

–1

+1

0
v

f(v)

* Sigmoid function:

f (v) � 1� e��v

1� e��v

–1

+1

0
v

f(v)

–10 10

� � 1

� � 0.3
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ARTIFICIAL NEURAL NETWORKS
* Given the model of the artificial neuron, many different types of neu-

ral networks can be built: without and with feedback loops (feedfor-
ward resp. recurrent networks), with some specific structure (lay-
ered, hierarchical), etc.

* Neural networks are mainly used for learning some function by
means of examples. This amounts to finding the correct weights.

* There are two types of learning: supervised and unsupervised.
* In some applications the network weights are fixed a priori; the learn-

ing property is not used. Instead, the final state after execution of the
network with given weights has a special meaning (it e.g. represents
the solution to some combinatorial optimization problem).
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FUZZY LOGIC (1)
* Consider a universe of discourse, e.g. the set of all positive real num-

bers. Indicate this set by X.
* A subset A � X can be specified by a Boolean membership function

�A : X � { 0, 1} :

�A(x) �
�

�

�

�

�

0, if x � A

1, if x � A

* Such sets are clearly defined; they are called crisp.
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FUZZY LOGIC (2)
* There is a necessity to define

sets whose membership is not
clearly defined. Think e.g. of
the “set of small numbers”,
which in some context may
mean numbers more-or-less
smaller than 5. Is 4.99 small
and 5.01 no longer small?

* Fuzzy logic solves this issue by
having membership functions
that map to the entire interval
[0,1] instead of to 0 or 1. The
value of �A(x) for some x ex-

presses the degree of member-
ship.

Set of small numbers:

0.0

0.5

1.0

0.0 5.0 10.0 15.0 20.0

�A(x)

x
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FUZZY LOGIC (3)
* Consider a second member-

ship function, �B for “all num-
bers that are close to 10”:

0.0

0.5

1.0

0.0 5.0 10.0 15.0 20.0

�A(x)

x

�B(x)

* Then a logic  system can be

used to combine membership
functions to obtain new ones.
For example, the “set of num-
bers that are either small or
close to 10”:

0.0

0.5

1.0

0.0 5.0 10.0 15.0 20.0
x

�A(x) � �B(x)
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FUZZY LOGIC (4)
* Fuzzy logic can be used to build systems for:

+ approximate reasoning (fuzzy if-then-else rules)
+ control applications (e.g. capture the behavior of a human opera-

tor by means of fuzzy rules)
* Fuzzy logic can be combined in many ways with neural networks:

+ the neurons themselves can be made to have a fuzzy behavior;
+ a neural network can be used for preprocessing signals to be in-

put to a fuzzy system;

NEURAL NETWORKS

INTRODUCTION

26

December 9, 1999

FITNESS
* Fitness is seen as the ability of an organism to solve problems that

it encounters.
* The book uses fitness in relation with the ability to compress data;

a better compression is associated with higher fitness scores. How-
ever, optimal solutions are not always necessary: approximate solu-
tions may be sufficient.

* Suppose that a collection of data is given.
+ If the data is random, the most compact description of the data is

the data itself.
+ Otherwise, a better description may be given by a combination of

a compaction program and a reduced data set.
+ The minimum description length gives the lower bound on the de-

scription.
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RECEPTIVE FIELD EXAMPLE (1)
* Take 16� 16 and 20� 20 patches from some images can be used

as filters:
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RECEPTIVE FIELD EXAMPLE (2)
* The output of 45 filters give a feature vector for some observation

(white cross);
* Filter: multiply pixel value in patch with value in image and sum.
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ARCHITECTURES
* Locality is important in a ‘‘mas-

sively parallel system” such as
a brain.

* On the other hand, long dis-
tance communication is re-
quired as well.

* A hierarchical architecture sat-
isfies both requirements.

* The time to accomplish a task
increases with increasing lev-
els of abstraction in hierarchy.

Level N+2

Level N+1

Level N

NEURAL NETWORKS

INTRODUCTION

30

December 9, 1999

TIME SCALES

Primitive Example

1 ms Neuron spike

10 ms Neural circuit

50 ms Neural act Noticing a stimulus

300 ms Physical act Moving the eyes

2 sec Simple task Saying a sentence

10 sec Complex task Moving in speed chess

Temporal scale
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OVERVIEW
* Core concepts: fitness (information theory, minimum description

length), programs (heuristic search techniques), data (data com-
pression, eigen vectors), dynamics (linear and nonlinear systems),
optimization (continuous and discrete).

* Memories: content-addressable memories (Hopfield, Kanerva), su-
pervised learning (multilayer perceptron, recurrent networks), unsu-
pervised learning (principal components, Kohonen networks).

* Programs: (hidden) Markov models, reinforcement learning.
* Systems:  genetic algorithms, genetic programming.


