
NEURAL NETWORKS

INTRODUCTION

1

December 9, 1999

OPTIMIZATION PROBLEMS
An instance I � (F,c), where:
* F is the set of feasible solutions, and
* c is a cost function, assigning a cost value to each feasible solution;

c : F � R

The solution of the optimization problem is the feasible solution with op-
timal (minimal/maximal) cost.

A feasible solution can be described by specific settings of problem pa-
rameters or variables.
* If the variables can assume discrete values, the problem is called a

combinatorial optimization problem.
* If the variables are continuous, the problem is a continuous opti-

mization problem.

NEURAL NETWORKS

INTRODUCTION

2

December 9, 1999

COMPUTATIONAL COMPLEXITY (1)
* Computational complexity: an abstract measure of the time and

space necessary to execute an algorithm as function of its ‘‘input
size’’.

* Time complexity is expressed in elementary computational steps.
For example: an addition (or multiplication, pointer indirection, etc.)
is one step.

* Space complexity is expressed in memory locations (e.g. bits, bytes,
words).

* Big-O notation:
f � O(g), if two constants n0 and K can be found such that:

�n � n0 : f (n) � K � g(n)

Example:

2n2
� O(n2)

NEURAL NETWORKS

INTRODUCTION

3

December 9, 1999

COMPUTATIONAL COMPLEXITY (2)
Relevant growth rates for the time complexity:
* polynomial vs. exponential
* linear vs. quadratic
* sublinear

NEURAL NETWORKS

INTRODUCTION

4

December 9, 1999

INTRACTABLE PROBLEMS
A complexity class that is often encountered in optimization, is the class
of NP-complete (NP = nondeterministic polynomial) problems. A pre-
cise definition involves several subtle issues. Here, it suffices to know
that for these problems only exponential-time algorithms are known
and that polynomial-time algorithms are very unlikely to be found.
Problems for which only exponential-time algorithms are known, are
called intractable. For intractable problems:
* Exact solutions can only be found when the problem size is small.
* For larger problem sizes, one can use:

+ approximation algorithms: they can e.g. guarantee a solution
within 20% of the optimum.

+ heuristics: nothing can be said a priori about the quality of the so-
lution. Heuristics could be based on computational intelligence.

NEURAL NETWORKS

INTRODUCTION

5

December 9, 1999

THE TRAVELING SALESMAN
PROBLEM (1)

* A typical example of an NP-complete problem.

PROBLEM DEFINITION:
Find the shortest tour that visit all cities in a given set exactly once.

c9

c1 c2 c3

c4

c5

c7

c6

c8

c9

c1 c2 c3

c4

c5

c7

c6
c8

c9

c1 c2 c3

c4

c5

c7

c6
c8

Euclidean version

NEURAL NETWORKS

INTRODUCTION

6

December 9, 1999

THE TRAVELING SALESMAN
PROBLEM (2)

A B

C

D

E

F

9

5 4
5

8

2

7

1

5
3

A B

C

D

E

F

9

5 4
5

8

2

7

1

5
3

Graph version

NEURAL NETWORKS

INTRODUCTION

7

December 9, 1999

COMPUTABILITY
* A function is called computable if it can be computed by a Turing ma-

chine.
* A Turing machine is a theoretical model of a computer; it consists of

a tape (data memory), a simple instruction set (read or write a bit on
the tape, advance tape, test current bit value) and a program.

* Any electronic computer can be emulated by a Turing machine at the
cost of a polynomial-time overhead. So, problems that are intracta-
ble for a Turing machine will be intractable for any other computer.

* Some problems are incomputable: no program can be written to
solve it, not even one with an exponential or higher time complexity
(e.g. the halting problem).

* Some people (e.g. Roger Penrose) claim that computation is insuffi-
cient to model the brain.

NEURAL NETWORKS

INTRODUCTION

8

December 9, 1999

COMPUTATIONAL INTELLIGENCE
* Special case of artificial intelligence (AI), nowadays often called

classical AI.
* Classical AI is more oriented towards models of reasoning. Think of

expert systems, playing games like chess, etc. A medical expert
system will e.g. assist a doctor in determining a patient’s disease by
starting from symptoms and using if-then-else-type rules.

* Computational intelligence (CI) refers to techniques inspired by phe-
nomena in nature. It is also called soft computing.

* CI is much more involved with numerical computations rather than
symbolic ones. It is, in a sense, closer to signal processing/electrical
engineering.

NEURAL NETWORKS

INTRODUCTION

9

December 9, 1999

COMPUTATION IN LIFELESS NATURE
* Question in book: does a table execute an algorithm because it orga-

nizes its atoms in some specific way?
* There is a parallel between the tendency of physical systems to

move towards a state of minimal energy and optimization problems.
Simulated annealing is based on this principle.

* Learning in neural networks can be based on simulated annealing.
These type of neural networks are called Boltzmann machines.

NEURAL NETWORKS

INTRODUCTION

10

December 9, 1999

SIMULATED ANNEALING
Inspired by material cooling down slowly and settling in minimal energy
state.

Analogies:
* Energy � cost function
* Molecule movement � movement in search space.
* Temperature � control parameter T.

Move strategy for f and g � m(f):
* �c � c(g) � c(f)

* If �c � 0, always accept transition to g.

* If �c � 0, accept with probability e
��c

T .

NEURAL NETWORKS

INTRODUCTION

11

December 9, 1999

SIMULATED ANNEALING: CODE
int accept(struct feasible solution f, g)

f

float �c;

�c c(g) - c(f);
if (�c � 0)

return 1;
else return (e

-�c

T > random(1));

g

simulated annealing()

f

struct feasible solution f, g;
float T;

f initial solution();
do f

do f
g “some element of N(f)”;

if (accept(f, g))

f g

while (!thermal equilibrium());

T new temperature(T);
while (!stop());
“report f”;

g

NEURAL NETWORKS

INTRODUCTION

12

December 9, 1999

COMPUTATION IN LIVING NATURE (1)
Three types of developments take place in living nature1:
1) Phylogeny, the temporal evolution of the genetic code.

+ The genetic code changes from generation to generation through
mutation (asexual reproduction) and recombination (sexual re-
production).

+ A survival-of-the-fittest principle leads to improved performance
of the species and adaptation to the environment.

+ The principle is used in the branch of computational intelligence
called evolutionary computation (EC). A well-known EC tech-
nique is the use of genetic algorithms (GAs).

 [1] Mange, D. and M. Tomassini (Eds.), Bio-Inspired Computing Machines, Towards Novel
Computational Architectures, Presses Polytechniques et Universitaires Romandes, Lau-
sanne, (1998).

NEURAL NETWORKS

INTRODUCTION

13

December 9, 1999

COMPUTATION IN LIVING NATURE (2)
2) Ontogeny, the growth of a multicellular organism from a single cell,

including differentiation. This phenomenon was a source of inspira-
tion for hardware evolution.

3) Epigenesis, the ability of an organism to modify parts of its system
as a result of interaction with its environment. Think e.g. of the nerv-
ous system and the immune system. This aspect of natural com-
putation has clearly led to neural networks.

Additionally, there is the actual “information processing”, the use of the
nervous system in various situations (from reflexes, to well-planned be-
havior).

NEURAL NETWORKS

INTRODUCTION

14

December 9, 1999

GENETIC ALGORITHMS
Principles:
* Based on analogy with evolution process in nature.
* Works with a population of feasible solutions, instead of a single fea-

sible solution.
* Each feasible solution is encoded in a linear data structure, usually

a bit string, called a chromosome.
* Two parent chromosomes are combined by crossover to form one/

two child chromosomes.
* Optimization based on ‘‘survival of the fittest’’: prefer parents with

better costs for mating.

NEURAL NETWORKS

INTRODUCTION

15

December 9, 1999

GENETIC ALGORITHMS: ILLUSTRATION

First parent

Second parent

0 1 0 1 1 0 0 1

1 0 0 0 0 1 1 0

First child

Second child

0 1 0 1 1

0 0 11 0 0 0 0

1 1 0

NEURAL NETWORKS

INTRODUCTION

16

December 9, 1999

GENETIC ALGORITHMS: CODE
genetic()

f

pop ;;
for (i 1; i � pop size; i i+ 1)

pop pop [f“chromosome of random feasible solution”g;
do f

newpop ;;
for (i 1; i � pop size; i i+ 1) f

parent1 select(pop);
parent2 select(pop);
child crossover(parent1, parent2);
newpop newpop[fchildg;

g

pop newpop;

g while (!stop());
“report best solution”;

g

NEURAL NETWORKS

INTRODUCTION

17

December 9, 1999

NATURAL NEURONS (1)

axon

dendrites

cell body

synapses

NEURAL NETWORKS

INTRODUCTION

18

December 9, 1999

NATURAL NEURONS (2)
* The human brain has about 1011 neurons.

* Each neuron connects to about 104 other neurons.
* A cell body has a diameter of about 10 microns; an axon can be as

long as 1 cm.
* Signals from one neuron to another are carried by neurotransmitters

which result in a charge transfer.
* A neuron will spike when its charge passes some value. The spiking

rate is a measure of neuron activity.
* A key issue in learning is the modification in signal transfer degree

at a synapse.

NEURAL NETWORKS

INTRODUCTION

19

December 9, 1999

ARTIFICIAL NEURONS
A neuron is modeled by an ele-
ment:

* It has an output value in a limit-
ed range, e.g. from –1 to 1 or
from 0 to 1; sometimes the out-
put can only have a discrete
value (0 and 1); note that the
spiking rate is modeled by a
level.

* It takes its inputs from other
neuron outputs or from external
inputs;

* Its output is calculated as the

weighted sum of the inputs that
is passed through a limiting (or
activation) function f:

xi � f(vi) vi ��

j

wijxj

xi

xa wia

xb

xc wic

wib

NEURAL NETWORKS

INTRODUCTION

20

December 9, 1999

LIMITING FUNCTION EXAMPLES
* Threshold function:

f (v) �
�

�

�

�

�

�1, if v � 0

1, if v � 0

–1

+1

0
v

f(v)

* Sigmoid function:

f (v) � 1� e��v

1� e��v

–1

+1

0
v

f(v)

–10 10

� � 1

� � 0.3

NEURAL NETWORKS

INTRODUCTION

21

December 9, 1999

ARTIFICIAL NEURAL NETWORKS
* Given the model of the artificial neuron, many different types of neu-

ral networks can be built: without and with feedback loops (feedfor-
ward resp. recurrent networks), with some specific structure (lay-
ered, hierarchical), etc.

* Neural networks are mainly used for learning some function by
means of examples. This amounts to finding the correct weights.

* There are two types of learning: supervised and unsupervised.
* In some applications the network weights are fixed a priori; the learn-

ing property is not used. Instead, the final state after execution of the
network with given weights has a special meaning (it e.g. represents
the solution to some combinatorial optimization problem).

NEURAL NETWORKS

INTRODUCTION

22

December 9, 1999

FUZZY LOGIC (1)
* Consider a universe of discourse, e.g. the set of all positive real num-

bers. Indicate this set by X.
* A subset A � X can be specified by a Boolean membership function

�A : X � { 0, 1} :

�A(x) �
�

�

�

�

�

0, if x � A

1, if x � A

* Such sets are clearly defined; they are called crisp.

NEURAL NETWORKS

INTRODUCTION

23

December 9, 1999

FUZZY LOGIC (2)
* There is a necessity to define

sets whose membership is not
clearly defined. Think e.g. of
the “set of small numbers”,
which in some context may
mean numbers more-or-less
smaller than 5. Is 4.99 small
and 5.01 no longer small?

* Fuzzy logic solves this issue by
having membership functions
that map to the entire interval
[0,1] instead of to 0 or 1. The
value of �A(x) for some x ex-

presses the degree of member-
ship.

Set of small numbers:

0.0

0.5

1.0

0.0 5.0 10.0 15.0 20.0

�A(x)

x

NEURAL NETWORKS

INTRODUCTION

24

December 9, 1999

FUZZY LOGIC (3)
* Consider a second member-

ship function, �B for “all num-
bers that are close to 10”:

0.0

0.5

1.0

0.0 5.0 10.0 15.0 20.0

�A(x)

x

�B(x)

* Then a logic system can be

used to combine membership
functions to obtain new ones.
For example, the “set of num-
bers that are either small or
close to 10”:

0.0

0.5

1.0

0.0 5.0 10.0 15.0 20.0
x

�A(x) � �B(x)

NEURAL NETWORKS

INTRODUCTION

25

December 9, 1999

FUZZY LOGIC (4)
* Fuzzy logic can be used to build systems for:

+ approximate reasoning (fuzzy if-then-else rules)
+ control applications (e.g. capture the behavior of a human opera-

tor by means of fuzzy rules)
* Fuzzy logic can be combined in many ways with neural networks:

+ the neurons themselves can be made to have a fuzzy behavior;
+ a neural network can be used for preprocessing signals to be in-

put to a fuzzy system;

NEURAL NETWORKS

INTRODUCTION

26

December 9, 1999

FITNESS
* Fitness is seen as the ability of an organism to solve problems that

it encounters.
* The book uses fitness in relation with the ability to compress data;

a better compression is associated with higher fitness scores. How-
ever, optimal solutions are not always necessary: approximate solu-
tions may be sufficient.

* Suppose that a collection of data is given.
+ If the data is random, the most compact description of the data is

the data itself.
+ Otherwise, a better description may be given by a combination of

a compaction program and a reduced data set.
+ The minimum description length gives the lower bound on the de-

scription.

NEURAL NETWORKS

INTRODUCTION

27

December 9, 1999

RECEPTIVE FIELD EXAMPLE (1)
* Take 16� 16 and 20� 20 patches from some images can be used

as filters:

NEURAL NETWORKS

INTRODUCTION

28

December 9, 1999

RECEPTIVE FIELD EXAMPLE (2)
* The output of 45 filters give a feature vector for some observation

(white cross);
* Filter: multiply pixel value in patch with value in image and sum.

NEURAL NETWORKS

INTRODUCTION

29

December 9, 1999

ARCHITECTURES
* Locality is important in a ‘‘mas-

sively parallel system” such as
a brain.

* On the other hand, long dis-
tance communication is re-
quired as well.

* A hierarchical architecture sat-
isfies both requirements.

* The time to accomplish a task
increases with increasing lev-
els of abstraction in hierarchy.

Level N+2

Level N+1

Level N

NEURAL NETWORKS

INTRODUCTION

30

December 9, 1999

TIME SCALES

Primitive Example

1 ms Neuron spike

10 ms Neural circuit

50 ms Neural act Noticing a stimulus

300 ms Physical act Moving the eyes

2 sec Simple task Saying a sentence

10 sec Complex task Moving in speed chess

Temporal scale

NEURAL NETWORKS

INTRODUCTION

31

December 9, 1999

OVERVIEW
* Core concepts: fitness (information theory, minimum description

length), programs (heuristic search techniques), data (data com-
pression, eigen vectors), dynamics (linear and nonlinear systems),
optimization (continuous and discrete).

* Memories: content-addressable memories (Hopfield, Kanerva), su-
pervised learning (multilayer perceptron, recurrent networks), unsu-
pervised learning (principal components, Kohonen networks).

* Programs: (hidden) Markov models, reinforcement learning.
* Systems: genetic algorithms, genetic programming.

