We will start at 13:45

IMPLEMENTATION OF DIGITAL SIGNAL PROCESSING (IDSP):

ALGORITHM TRANSFORMATIONS

Sabih H. Gerez
University of Twente
Faculty of EEMCS
Computer Architecture for Embedded Systems (EWI-CAES)

COURSE PROGRESS

<table>
<thead>
<tr>
<th>Date</th>
<th>Task Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>February 19, 2021</td>
<td>Fixed-point design [How08]</td>
<td>Fixed-Point Design</td>
</tr>
<tr>
<td>February 19, 2021</td>
<td>The Arx RTL Language and Toolset [How07]</td>
<td>Arx Version with audio</td>
</tr>
<tr>
<td>February 26, 2021</td>
<td>Algorithm transformations [Par95]</td>
<td>No lecture, holiday week</td>
</tr>
<tr>
<td>March 5, 2021</td>
<td>The CORDIC Algorithm [Aza08] and [Loo09]</td>
<td>Transformation Addendum</td>
</tr>
<tr>
<td>March 12, 2021</td>
<td>Polyphase implementation of multirate filters [Law02] and [Vai09]</td>
<td>CORDIC</td>
</tr>
<tr>
<td>March 12, 2021</td>
<td>Multiplierless filter design [Hew06], [Vor07], [Aks14] and [Kot03]</td>
<td>Multiplierless Filter Design</td>
</tr>
</tbody>
</table>

PROJECT PROGRESS POLL

- Please respond on your progress on Project MAP:
 - A: I did not start at all;
 - B: I have worked on the first “pen and paper” exercises;
 - C: I have also started with the exercises on the xoc2 server;
 - D: I am (almost) ready.

FEEDBACK ON PROJECT WORK

- No intermediate grading of project reports.
- You hand in all reports simultaneously at the end of the quarter.
- If you are uncertain or stuck about some issue, you can contact me. Depending on the nature of your question I may give you some hints or just tell you to think a bit more for yourself.
TOPOICS

* Pipelining
* Retiming
* Parallel processing
* Loop unrolling
* Unfolding
* Look-ahead transformation

SPEED-UP TECHNIQUES: PIPELINING

Insert delay elements on all edges that are cut by a *cut line* through an edge of the critical path in the DFG.

* Works for acyclic DFGs.
* Schedule becomes overlapped.

Example

OPTIMAL RETIMING

* It is possible to compute the optimal positions of the delay elements in an efficient way.
* The optimization goal is to minimize the longest path from any delay element to any other. In other words, to minimize the iteration period of a non-overlapping schedule.

RETIMING: LEISERSON ET AL.

CORRELATOR EXAMPLE

Given: \(\delta(+) = 7 \) and \(\delta(?) = 3 \); \(T_{0_{\text{min}}} = ? \)

OPTIMAL RETIMING VS. FASTEST SCHEDULE (1)

\(T_{0_{\text{min}}} = 13 \) for non-overlapped schedule when \(\delta(+) = 7 \) and \(\delta(?) = 3 \); however, \(T_{0_{\text{min}}} = 10 \) for an overlapped schedule.

OPTIMAL RETIMING VS. FASTEST SCHEDULE (2)

Overlapped schedule with \(T_{0_{\text{min}}} = 10 \).

SOME REMARKS ON \(T_{0_{\text{min}}} \)

* Retiming does not affect \(T_{0_{\text{min}}} \) for overlapped scheduling of IDFG’s.
* The \(T_{0} \) for nonoverlapped scheduling obtained after optimal retiming may still be larger than \(T_{0_{\text{min}}} \). This is not true when all computational delays are equal to unity.
* \(T_{0_{\text{min}}} \) has been defined as an integer; a fractional \(T_{0_{\text{min}}} \) makes sense when unfolding is applied (unfolding creates a new DFG of multiple copies of the original one; see later).

SPEED-UP TECHNIQUES: PARALLEL PROCESSING

- Works for acyclic IDFGs.
- Duplicate the IDFG as often as desired speed-up factor.
- Allows any arbitrary speed-up, but is proportionally expensive.

For an IDFG, loop unrolling by a factor n amounts to converting it into an acyclic graph (by cutting the delay nodes) and concatenating n copies of the acyclic graph.

LOOP UNROLLING

Loop unrolling is the process of explicitly describing multiple iterations of some loop in order to create more parallelism.

Original loop:
```plaintext```
for (i=0; i<n; i++) {
    a[i] = f(x[i]);
    y[i] = g(a[i]);
}
```

After unrolling with a factor 2:
```plaintext```
for (i=0; i<n/2; i++) {
    a[2*i] = f(x[2*i]);
    y[2*i] = g(a[2*i]);
    a[2*i+1] = f(x[2*i+1]);
    y[2*i+1] = g(a[2*i+1]);
}
```

UNFOLDING (1)

- A technique for the duplication of cyclic IDFGs in combination with processing multiple inputs at a time. Cycles in the graph are preserved as opposed to loop unrolling.
- Consider the following IDFG:

UNFOLDING (1A)

- Topology-preserving transformation:
 - Duplicate graph
 - Remove delay elements

For an IDFG, loop unrolling by a factor n amounts to converting it into an acyclic graph (by cutting the delay nodes) and concatenating n copies of the acyclic graph.
UNFOLDING (1B)

- Add missing edges either with or without delay node.

\[s[2k] = i[2k] + o[2k - 1] \]
\[s[2k + 1] = i[2k + 1] + o[2k] \]
\[o[2k] = as[2k - 1] \]
\[o[2k + 1] = as[2k] \]

UNFOLDING (2)

* The precise unfolding algorithm will not be given here; it amounts to duplicating all vertices in the IDFG such that \(n \) copies of each vertex is created (\(n \) is the unfolding factor) and then to connecting these vertices with edges having an appropriate number of delay elements. The unfolded graph can also be reconstructed from the equations.

\[s[2k] = i[2k] + o[2k - 1] \]
\[s[2k + 1] = i[2k + 1] + o[2k] \]
\[o[2k] = as[2k - 1] \]
\[o[2k + 1] = as[2k] \]

UNFOLDING (3)

* The example IDFG after unfolding:

- Note that the unfolded IDFG has two loops with one delay element each and a computational duration of 3. Because a delay element creates an offset of two indices (2 inputs are processed in each iteration), the effective iteration period bound is equal to \(T_{0\text{min}} = \frac{3}{2} \).

LOOK-AHEAD TRANSFORMATION (1)

* Consider the following computation:

\[x[n] = ax[n - 1] + u[n] \]

* It has one multiplication and one addition in the critical loop with one delay element. If \(\delta(+) = 1 \) and \(\delta(*) = 2 \), \(T_{0\text{min}} = \frac{3}{1} = 3 \).
LOOK-AHEAD TRANSFORMATION (2)

* Apply look-ahead transformation (think of the principle of look-ahead addition):

\[x[n] = a(ax[n - 2] + u(n - 1)) + u[n] \]

\[x[n] = a^2x[n - 2] + au[n - 1] + u[n] \]

* The new equation has one multiplication and one addition in the critical loop with two delays leading to \(T_{\text{min}} = \frac{3}{2} = 2 \).

* The transformation can affect the original computation (finite word length effects).

RELATION WITH RTL SYNTHESIS

* Multicycle operations are not so common in RTL synthesis (one normally defines a clock period for the registers and all combinational logic should execute in this period).

* RTL synthesis programs such as the Synopsys Design Compiler do support multicycle operations, by the way.

* Presented theory becomes less interesting when all computations have a unit delay:
 + Non-overlapped scheduling after optimal retiming gives fastest implementation.

* Theory of transformations is still applicable to combinational logic in case of one-to-one mapping (think e.g. of converting the ripple-carry adder to the look-ahead adder by means of the look-ahead transformation).