IMPLEMENTATION OF DIGITAL SIGNAL PROCESSING (IDSP):

ORGANIZATION

Sabih H. Gerez
University of Twente
Faculty of EEMCS
Computer Architecture for Embedded Systems (EWI-CAES)

GOALS

• Becoming familiar with system-level issues relevant for the implementation of signal-processing algorithms.
• Knowledge of design flow and design automation tools.
• Becoming familiar with functional blocks typically used in implementations of signal processing (e.g. CORDIC, FFT)
• Becoming familiar with typical signal-processing algorithms as used in modern multimedia applications.
• Practical design experience.

RECOMMENDED KNOWLEDGE

• From the Master's program:
 – System-on-Chip Design (191210750) or
 – System-on-Chip Design for Embedded Systems (191211590) or
 – Design of Digital Systems (192130022) or
 – Equivalent preparation with some basic knowledge of VHDL.

• Students without knowledge of System-on-Chip Design (for ES) will need to some reparation exercises costing about 10 to 20 hours. See later.

• Knowledge of digital signal processing is convenient but not required.
PRE-KNOWLEDGE POLL

• A: SoC Design (for ES) & DDS (including 2021Q3)
• B: just SoC Design (for ES)
• C: just DDS (including 2021Q3)
• D: none of these

COURSE MATERIAL

• Not necessary to buy a book.

• Mainly journal articles, conference papers and book chapters distributed mostly through the course’s public web page with URL:

 http://sabihgerez.com/ut/vlsidsp/

• Material that is not linked via the page above, can be downloaded from the course’s Canvas page.

LECTURES

• 7 or 8 lectures of (2 x 45 mins.) on Fridays 6th/7th hour (see WWW page for schedule details).

STUDY LOAD: 5 ECTS (140 hours)

• 7 or 8 lectures of 1.5 hours: about 10 to 12 hours.
• Studying the written material: about 30 hours.
• Practical projects and homework problems: about 100 hours.

HOMEWORK/PROJECT TEAMS

• To be performed in teams of two (rule), or alone (exception):
 – Sign up for teams on Canvas.

• Team members are supposed to contribute equally.
 – Contact instructor if you feel in disadvantage due to partner failing to contribute.
 – Signal problems in time, not just a few days before final deadline.

• If you do not have a partner, come forward for matchmaking during the lecture break.
EXAMINATION

• Based on homework exercises, most likely involving Bibix tool Arx. Details to be published on public web page.
• First exercise to be released after 3rd lecture.
• All projects need to be completed by the end of quarter; see web page for exact dates.
• Students can propose alternatives for projects, especially for the larger final one.

SERVER ACCESS

• The exercises are to be performed on server xoc2.ewi.utwente.nl.
 – Login permissions need to be arranged for all students.
 – Enrollment data from Canvas/Osiris are used.
 – Late registrants should contact instructor.

REPARATION EXERCISES

• Meant for students without knowledge of System-on-Chip Design (for ES).
• Students can start from Day 1; do not wait too long.
• Not part of the examination.
• No need to work in groups.