MULTIPLIERLESS FILTER DESIGN

Implementation of Digital Signal Processing

Sabih H. Gerez
University of Twente

• Realization of filters without full-fledged multipliers
• Some slides based on support material by W. Wolf for his book *Modern VLSI Design, 3rd edition.* © W
• Partly based on following papers:

TOPICS

• Multiplier wrap-up:
 – Array multiplier
 – Booth multiplier
• Filter structures: direct, transposed and hybrid forms
• Canonical signed digit
• Optimal single and multiple-constant multiplication
• Choosing coefficients

MUTIPLICATION

• Distinguish between:
 – Multiplication of two variables
 – Multiplication of one variable by a constant (scaling) ⇒ opportunities of optimization
• Constants:
 – Can be considered as given
 – Can be specially chosen
• Implementation:
 – One-to-one
 – Resource sharing
 – In software, on processor without hardware multiplier
 [How does that work?]
ELEMENTARY SCHOOL ALGORITHM

```
0 1 1 0   multiplicand
x 1 0 0 1   multiplier
```

```
0 1 1 0   partial product
+ 0 0 0 0
```

```
0 0 1 1 0
```

```
0 0 0 1 1 0
```

```
+ 0 1 1 0
```

```
0 1 1 0 1 1 0
```

UNSIGNED NUMBERS!

ARRAY MULTIPLIER

- Array multiplier is an efficient layout of a combinatorial (parallel-parallel) multiplier.
- Array multipliers may be pipelined to decrease clock period at the expense of latency.

ARRAY MULTIPLIER ORGANIZATION

- **Skew array** for rectangular layout

UNSIGNED 4X4 ARRAY MULTIPLIER

```
y0 → y1 → y2 → y3
```

```
x3 y0 + x3 y1 + x3 y2 + x3 y3
```

```
x2 y0 + x2 y1 + x2 y2 + x2 y3
```

```
x1 y0 + x1 y1 + x1 y2 + x1 y3
```

```
x0 y0 + x0 y1 + x0 y2 + x0 y3
```

```
P7 P6 P5 P4 P3 P2 P1 P0
```

© Sabih H. Gerez, University of Twente, The Netherlands
ARRAY MULTIPLIER COMPONENTS

- AND gates
- FULL ADDERs
- HALF ADDERs

Fast multiplication amounts to reducing the critical path.

[What is the main issue when doing signed multiplications?]

2’S COMPLEMENT MULTIPLICATION (1)

- An n-bit number X, and an m-bit number Y:

\[
X = -x_{n-1}2^{n-1} + \sum_{i=0}^{n-2} x_i 2^i
\]

\[
Y = -y_{m-1}2^{m-1} + \sum_{i=0}^{m-2} y_i 2^i
\]

2’S COMPLEMENT MULTIPLICATION (2)

- Product:

\[
P = XY = x_{n-1}y_{m-1}2^{m+n-2} + \sum_{i=0}^{n-2} \sum_{j=0}^{m-2} x_i y_j 2^{i+j} + -2^{n-1}\sum_{i=0}^{m-2} y_i x_{n-1}2^i - 2^{m-1}\sum_{i=0}^{n-2} x_i y_{m-1}2^i
\]

2’S COMPLEMENT MULTIPLICATION (3)

- Note that: \[-x \cdot 2^n = -2^n + \overline{x} \cdot 2^n\]

- and:

\[
\sum_{i=0}^{k} -2^i = 1 - 2^{k+1}
\]

- Therefore:

\[
-2^{n-1}\sum_{i=0}^{m-2} y_i x_{n-1}2^i = 2^{n-1}\sum_{i=0}^{m-2} -2^i + 2^{n-1}\sum_{i=0}^{m-2} y_i x_{n-1}2^i
\]

\[
= -2^{n+m-2} + 2^{n-1} + 2^{n-1}\sum_{i=0}^{m-2} y_i x_{n-1}2^i
\]
2’S COMPLEMENT MULTIPLICATION (4)

- The product becomes:

\[P = XY = x_{n-1}y_{m-1}2^{n+m-2} + \]
\[\sum_{i=0}^{n-2} \sum_{j=0}^{m-2} x_i y_j 2^{i+j} - 2^{n+m-1} + 2^{n-2} + 2^{m-2} + 2^{n-1} \sum_{i=0}^{m-2} y_i x_{n-1} 2^i + 2^{m-1} \sum_{i=0}^{n-2} x_i y_{m-1} 2^i \]

BAUGH-WOOLEY MULTIPLIER

- Algorithm for two's-complement multiplication.
- Careful processing of partial products leads to:
 - Array with only additions, no subtractions
 - No hardware for sign extensions in upper left corner
- Achieved by:
 - Negation of some partial products
 - Injection of ones in some array positions

BAUGH-WOOLEY SIGNED 4X4 ARRAY MULTIPLIER

BOOTH MULTIPLIER

- Encoding scheme to reduce number of stages in multiplication.
- Performs two bits of multiplication at once; requires half the stages.
- Each stage is slightly more complex than an adder.
BOOTH ENCODING

- The wanted product: \(x \cdot y \).

- Two’s-complement form of multiplier:
 \[y = -2^ny_n + 2^{n-1}y_{n-1} + 2^{n-2}y_{n-2} + \ldots \]

- Rewrite using \(2^a = 2^{a+1} - 2^a \):
 \[y = 2^n(y_{n-1} - y_n) + 2^{n-1}(y_{n-2} - y_{n-1}) + 2^{n-2}(y_{n-3} - y_{n-2}) + \ldots \]

- Consider first two terms: by looking at three bits of \(y \), we can determine whether to add \(x \), \(2x \), \(-x \), \(-2x \), or \(0 \) to partial product.

BOOTH ACTIONS

<table>
<thead>
<tr>
<th>(y_jy_{j-1}y_{j-2})</th>
<th>increment ((2(y_{j-1} - y_j) + y_{j-2} - y_{j-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0</td>
<td>0x</td>
</tr>
<tr>
<td>0 0 1</td>
<td>1x</td>
</tr>
<tr>
<td>0 1 0</td>
<td>1x</td>
</tr>
<tr>
<td>0 1 1</td>
<td>2x</td>
</tr>
<tr>
<td>1 0 0</td>
<td>-2x</td>
</tr>
<tr>
<td>1 0 1</td>
<td>-1x</td>
</tr>
<tr>
<td>1 1 0</td>
<td>-1x</td>
</tr>
<tr>
<td>1 1 1</td>
<td>0x</td>
</tr>
</tbody>
</table>

Taking steps of 2

BOOTH EXAMPLE

- \(x = 011001 \) (25\(_{10}\)), \(y = 101110 \) (-18\(_{10}\)).
- \(y_1y_0y_{-1} = 100, P_1 = P_0 - (10 \cdot 011001) = 11111001110, -2 \cdot 1 \cdot x \)
 \(-50_{10}\)
- \(y_3y_2y_1 = 111, P_2 = P_1 + 0 = 11111001110, 0 \cdot 4 \cdot x \)
 \(-50_{10}\)
- \(y_3y_4y_3 = 101, P_3 = P_2 - 0110010000 = 11000111110, -400_{10}, -1 \cdot 16 \cdot x \)
 \(-50_{10}\)
- \(y_3y_4y_3 \) (bitwise invert 25) 100110 +1
 -25\(_{10}\) 100111
 \(-50_{10}\) 1001110

BOOTH STRUCTURE

Comparison with array multiplier:
- Depth for partial product generation is half, which should result in faster and smaller solution [not always].
- Some extra overhead for Booth encoding, etc.
FIR-FILTER DIRECT FORM (1)

- FIR = finite impulse response
- Difference equation:
 \[y[n] = \sum_{k=0}^{N} b_k \cdot x[n - k] \]

 \(b_0 \quad b_1 \quad b_2 \quad b_{N-1} \quad b_N \)

 \(+ \quad + \quad + \quad + \quad + \)

 \(y[n] \)

- Where is the critical path?
- How long is it as function of \(N \)?

CLASSICAL RETIMING

- It is allowed to “push delay elements” through a computation:
 - From inputs to outputs or
 - From outputs to inputs
- Compute-and-then-delay is the same as delay-and-then-compute.
- Allowed in cyclic DFGs.

CUT-SET RETIMING

- Generalization of classical retiming.
- Cut-set = set of edges that cuts a graph in two when removed.
- Given a cut-set of any DFG, the DFG’s behavior remains unchanged if the same number of delays are added (removed) on incoming edges as are removed (added) on outgoing edges.
FIR-FILTER DIRECT FORM (3)

- Reverse order of additions:

\[
x[n] \quad T_0 \quad T_0 \quad T_0 \quad T_0 \quad y[n]
\]

\[
x[n] \quad T_0 \quad T_0 \quad T_0 \quad T_0 \quad y[n]
\]

CUT-SET RETIMED FIR-FILTER

\[
x[n] \quad T_0 \quad T_0 \quad T_0 \quad T_0 \quad y[n]
\]

FIR-FILTER TRANSPOSED FORM

- Computationally equivalent to direct form
- Can be obtained by systematically applying cut-set retiming.
- Now, all multiplications share one input

\[
x[n] \quad b_0 \times \quad b_1 \times \quad b_2 \times \quad b_{N-1} \times \quad b_N \times \quad y[n]
\]

FIR FILTER HYBRID FORM

- The direct-form-implementation has all its delays in the input line.
- The transposed-form implementation has all delays on the output line.
- Hybrid-form implementation has part of the delays in the input line and part on the output line. See paper by Aksoy et al. for more details.
IIR FILTER

- IIR = *infinite impulse response*
- Difference equation:

\[
y[n] = \sum_{k=1}^{N} a_k \cdot y[n-k] + \sum_{k=0}^{N} b_k \cdot x[n-k]
\]

IIR-FILTER DIRECT FORM 1

IIR-FILTER TRANSPOSED FORM

SCALING: BOUNDS ON ADDITIONS (1)

- Consider multiplication of \(x \) by \(71 = 1000111_2 \).
- Additions-only solution:

\[
71x = (x \ll 6) + (x \ll 2) + (x \ll 1) + x
\]

(realized by means of 3 shifts and 3 additions; shifts by a constant costs only wires in hardware)

- Subtractions-only solution:

\[
71x = ((x \ll 7) - x) - (x \ll 5) - (x \ll 4) - (x \ll 3)
\]

(realized by means of 4 shifts and 4 subtractions)
SCALING: BOUNDS ON ADDITIONS (2)

• In general, if b is the number of bits, z the number of zeros and o the number of ones ($b = z + o$):
 – The additions-only solution requires $o - 1$ additions.
 – The subtractions-only solution requires $z + 1$ subtractions.
• There is always a solution with at most $b/2 + O(1)$ additions or subtractions (just take the cheapest of the two solutions).
• The average cost is also $b/2 + O(1)$.
• Booth encoding has also the same cost.
• Can it be done better?

SIGNED POWER-OF-TWO REPRESENTATION

• Uses three-valued digits instead of binary digits: $0, 1, \bar{1}$
• A 1 at position k means a contribution of 2^k to the final value (as usual).
• A $\bar{1}$ at position k means a contribution of -2^k to the final value.
• Example: $101\bar{1}00\bar{1} = 64 + 16 - 8 - 1 = 71$

CANONICAL SIGNED-DIGIT (CSD)

• Special case of signed-digit power-of-two, with minimal number of non-zero digits.
• Canonical = unique encoding.
• When used to minimize additions in constant multiplication, reduces number of operations to $b/3 + O(1)$ in average, but still $b/2 + O(1)$ in worst case.
• Example: $1001\bar{1}00\bar{1} = 64 + 8 - 1 = 71$

TWO’S COMPLEMENT TO CSD CONVERSION (1)

• Two’s complement number: $X = x_{n-1}x_{n-2} \cdots x_1x_0$
• Target: $C = c_{n-1}c_{n-2} \cdots c_1c_0$
• Start from LSB and proceed to MSB using table on next slide
• Dummy value (sign extension): $x_n = x_{n-1}$
• Carry-in, initialized to 0.
2'S COMPLEMENT TO CSD CONVERSION (2)

<table>
<thead>
<tr>
<th>carry-in</th>
<th>x_{i+1}</th>
<th>x_{i}</th>
<th>carry-out</th>
<th>c_{i}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Hewlitt & Swarzlander, Table 2

CSD NOT OPTIMAL

- CSD has minimal number of non-zeros, but is still not optimal for the “single constant multiplication” problem.
- How come?

SINGLE-CONSTANT MULTIPLICATION

- Number of operations can be reduced by allowing shifting and adding intermediate results
- Example, goal is to multiply by $45 = 101101_2 = 1010101$

Voronenko & Pueschel, Figure 2

- Even more opportunities for optimization occur when multiple constants can be optimized at the same time (think of the transposed form of a FIR filter).
- Example:

Voronenko & Pueschel, Figure 5
COMPUTATIONAL COMPLEXITY

- The optimization of the implementation for both the single-constant and multiple-constant multiplication problems is NP-complete.
- Powerful heuristics are available.
- Try SPIRAL on-line application:

 http://spiral.ece.cmu.edu/mcm/gen.html

CONSTANT MATRIX-VECTOR MULT. (1)

Aksoy et al., Figure 3

\[
\begin{align*}
y_1 &= 11x_1 + 17x_2 \\
y_2 &= 19x_1 + 33x_2
\end{align*}
\]

Applications in hybrid implementations of FIR filters

Unoptimized: 8 add/sub

OPTIMIZED WITH DEPTH CONSTRAINT OF 3: 7 add/sub

CHOOSING THE COEFFICIENTS

- Until now, the discussion was about implementing filters with given constant coefficients as efficiently as possible.
- Classical approach starts from floating-point coefficients as e.g. computed in Matlab and a “blind” fixed-point conversion.
- It is even more interesting to take cheap implementation as a criterion during filter design. A problem description could e.g. be:
 - Given a number \(T \), construct a filter with at most \(T \) non-zero bits in its set of coefficients while at the same time satisfying the usual criteria such as “bandwidth”, “pass band ripple”, etc.