THE INTERPRETATION OF BIT VECTORS

• Which number is this?

```
1 1 0 1
```

IMPLEMENTATION OF DIGITAL SIGNAL PROCESSING (IDSP)

Fixed-Point Design

FIXED-POINT DESIGN

• Central issue: how to perform a desired computation with as few bits per operand as possible

• Some material based on:

• Thanks to Jeroen de Zoeten, for some material reused from his M.Sc. graduation presentation (2004).

TOPICS

• Fixed-point data types
• SystemC
• Peak-value estimation
• Word-length optimization
FIXED-POINT DATA TYPES

- A specific interpretation of a logic vector
 - Binary point
 - Integer and fractional part: \(iwl\) and \(fwl\) (integer and fractional word length)
 - Signed or unsigned

EXAMPLES OF FIXED-POINT NUMBERS

- Example pattern: 1101
 - With \(iwl = 2\) and unsigned \(\rightarrow 13/4\)
 - With \(iwl = 2\) and signed \(\rightarrow -3/4\)
 - With \(iwl = 6\) and unsigned \(\rightarrow 52\)
 - With \(iwl = 6\) and signed \(\rightarrow -12\)
 - With \(iwl = -1\) and unsigned \(\rightarrow 13/32\)
 - With \(iwl = -1\) and signed \(\rightarrow -3/32\)

FIXED-POINT ADDITION/SUBTRACTION

- Integer adder can be used after:
 - Alignment of binary point
 - Sign extension

A: Signed 2,4
B: Signed 4,2
Y: Signed 3,1
\(Y = A + B\)

FIXED-POINT MULTIPLICATION

- Integer multiplier can directly be used.
- One only needs to figure out the location of the binary point.
QUANTIZATION: TRUNCATION

- If the target provides less accuracy than the value to assign:
 - **Truncation** → no hardware
 - What happens to the signal in EE terms?

(5,4) 0 1 0 0

(5,1) S

QUANTIZATION: ROUNding

- If the target provides less accuracy than the value to assign:
 - **Rounding** (various modes) → extra hardware

<table>
<thead>
<tr>
<th>Mode</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(5,4)</td>
<td>0 1 0 0</td>
</tr>
<tr>
<td>(5,1)</td>
<td>S</td>
</tr>
<tr>
<td>(6,1)</td>
<td>S</td>
</tr>
</tbody>
</table>

OVERFLOW: WRAP AROUND

- If the value to assign is outside the range of target:
 - **Wrap around** → no hardware

<table>
<thead>
<tr>
<th>Mode</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(6,1)</td>
<td>S</td>
</tr>
<tr>
<td>(3,1)</td>
<td>S</td>
</tr>
</tbody>
</table>

OVERFLOW: SATURATION

- If the value to assign is outside the range of target:
 - **Saturation** (various modes) → extra hardware

<table>
<thead>
<tr>
<th>Mode</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(6,1)</td>
<td>S S S S</td>
</tr>
<tr>
<td></td>
<td>S</td>
</tr>
</tbody>
</table>
SystemC

• Open source standard for system-level modeling, based on C++ class libraries and a simulation kernel.

• Provides modeling from system level down to (mainly) register-transfer level (RTL).

• For more details, see the Accellera web site (non-profit organization for system-level design):

 http://www.accellera.org/

SystemC FIXED-POINT DATA TYPES

• Declaration (signed and unsigned version):

 sc_fixed<wl, iwl, q_mode, o_mode, n_bits> x;
 sc_ufixed<wl, iwl, q_mode, o_mode, n_bits> x;

• \(wl\): word length, \(iwl + fwl\)

• \(iwl\): integer word length

• \(q_mode\): (optional) quantization mode, default is truncation

• \(o_mode\): (optional) overflow mode, default is wrap around

• \(n_bits\): (optional) number of bits for overflow (\(n_bits\) are saturated, the others are wrapped around)

• \(sc_fix/sc_ufix\) data types can be resized at run time

SystemC FIXED-POINT CODE EXAMPLE

```cpp
sc_fixed<6, 2> a;
sf_fixed<6, 4> b;
sf_fixed<3, 2, SC_RND, SC_SAT> c;
c = a + b;
```

• Implementation:

 – Calculate sum at full precision
 – Perform quantization processing
 – Perform overflow processing

THE FIXED-POINT DESIGN PROBLEM (1)

• Mathematical descriptions of DSP algorithms often assume infinite precision in the signal representation.

• The closest approximation of infinite precision in computers is the floating-point number representation.

• Floating-point hardware is expensive and is avoided if possible.

• Implementations therefore use fixed-point hardware.

• Problem: which fixed-point formats should be used to obtain the cheapest implementation of the original algorithm?
THE FIXED-POINT DESIGN PROBLEM (2)

• One should look at:
 – The dynamic range: avoid overflow and therefore know peak values.
 – The accuracy: quantization levels.

PEAK-VALUE ESTIMATION

• Related to the fact that signal magnitude may grow due to addition or multiplication
• In a stable system, the signal cannot grow indefinitely
• Question is: what is the maximal value encountered for each signal in the system?
• Issue is not directly related to accuracy, the number of bits used for each signal.

BOUGANIS FIXED-POINT FORMAT

Considers signed numbers only; sign bit is not counted in size.

PEAK-VALUE ESTIMATION METHODS

• Analytic:
 – examine transfer functions
• Data-range propagation:
 – Interval analysis
 – Compute result interval from input intervals
 – Tends to overestimate requirements
• Simulation-driven analysis:
 – Monitor values produced during a representative simulation and record extremes
 – Use a safety factor > 1
ANALYTIC PEAK-VALUE ESTIMATION

• Consider an FIR filter:
 \[y[n] = \sum_{k=0}^{N} h[k] \cdot x[n-k] \]

• Then, an upper bound for the output value is found by:
 \[y_{\text{peak}} = x_{\text{peak}} \sum_{k=0}^{N} |h[k]| \]

• For recursive filters, a similar approach can be followed, starting from a state-space representation.

INTERVAL ANALYSIS (1)

• Represent each value \(x \) as an interval: \(\tilde{x} = [x^-, x^+] \)

• For each arithmetic operation, one can calculate the result interval from the operand intervals. For example:

\[
\begin{align*}
\tilde{x} + \tilde{y} &= [x^- + y^-, x^+ + y^+] \\
\tilde{x} \cdot \tilde{y} &= \left[\min(x^- y^-, x^- y^+, x^+ y^-, x^+ y^+) , \right. \\
&\left. \max(x^- y^-, x^- y^+, x^+ y^-, x^+ y^+) \right]
\end{align*}
\]

INTERVAL ANALYSIS (2)

Beware: this is no FIR filter, but a phantasy design.

WORD-LENGTH PROPAGATION

<table>
<thead>
<tr>
<th>Type</th>
<th>Propagation rules</th>
</tr>
</thead>
</table>
| GAIN | For input \((n_a, p_a)\) and coefficient \((n_b, p_b)\):
| | \(p_j = p_a + p_b\) \\
| | \(n_j^f = n_a + n_b\) |
| ADD | For inputs \((n_a, p_a)\) and \((n_b, p_b)\):
| | \(p_j = \max(p_a, p_b) + 1\) \\
| | \(n_j^f = \max(n_a, n_a + b_a - p_b) - \min(0, p_a - p_b) + 1\) \\
| | (for \(n_a > p_a - p_b \) or \(n_b > p_b - p_a\)) |
| DELAY or FORK | For input \((n_a, p_a)\):
| | \(p_j = p_a\) \\
| | \(n_j^f = n_a\) |
QUANTIZATION: NOISE MODELING (1)

- Suppose signal with fixed-point format \((n, 0)\) is multiplied with another signal with fixed-point format \((n, 0)\) and the result is truncated to \(n\) bits.
- Error ranges from 0 to \(2^{-2n} - 2^{-n} \approx -2^{-n}\)
- Uniform distribution of error: \(p(e) = 2^n, e \in [-2^{-n}, 0]\)
- Consider multiplication; is the error really uniformly distributed?

NOISE MODELING (2)

- Average error is: \(-2^{-(n+1)}\)
- Variance:
 \[
 \sigma^2 = \int_{-2^{-n}}^{0} 2^n [e + 2^{-(n+1)}]^2 \, de = \frac{1}{12} 2^{-2n}
 \]

NOISE PROPAGATION

- In linear time-invariant (LTI) systems, one can analytically calculate the effect of quantization in input or intermediate nodes to noise on the output.
- In case of non-linear systems, one could linearize the system by means of Taylor expansion (a similar approach as a small-signal model used in electronics).
- Noise propagation methods have the advantage of reduced computational complexity with respect to a simulations-only approach.

FIXED-POINT OPTIMIZATION PROBLEM

- Define a performance measure. Examples:
 - SNR at the output of a filter
 - Bit-error rate in a communication system
- Define a cost measure, such as the area of the circuit.
- Goal is to satisfy a performance requirement at minimal cost by optimally choosing a fixed-point format for each signal in the system.
- The most practical approach is to start with a floating-point model and gradually replace the data types by fixed-point types while monitoring performance by simulations.
SCHEDULING, ETC.

- Sharing of resources across multiple clock cycles puts additional constraints on the fixed-point format of signals.