THE INTERPRETATION OF BIT VECTORS

- Which number is this?

```
1 1 0 1
```
FIXED-POINT DATA TYPES

- A specific interpretation of a logic vector
 - Binary point
 - Integer and fractional part: \(iwl\) and \(fwl\) (integer and fractional word length)
 - Signed or unsigned

EXAMPLES OF FIXED-POINT NUMBERS

- Example pattern: 1101
 - With \(iwl = 2\) and unsigned \(\rightarrow 13/4\)
 - With \(iwl = 2\) and signed \(\rightarrow -3/4\)
 - With \(iwl = 6\) and unsigned \(\rightarrow 52\)
 - With \(iwl = 6\) and signed \(\rightarrow -12\)
 - With \(iwl = -1\) and unsigned \(\rightarrow 13/32\)
 - With \(iwl = -1\) and signed \(\rightarrow -3/32\)

FIXED-POINT ADDITION/SUBTRACTION

- Integer adder can be used after:
 - Alignment of binary point
 - Sign extension

FIXED-POINT MULTIPLICATION

- Integer multiplier can directly be used.
- One only needs to figure out the location of the binary point.
QUANTIZATION: TRUNCATION

- If the target provides less accuracy than the value to assign:
 - Truncation \rightarrow no hardware
 - What happens to the signal in EE terms?

QUANTIZATION: ROUNDING

- If the target provides less accuracy than the value to assign:
 - Rounding (various modes) \rightarrow extra hardware

OVERFLOW: WRAP AROUND

- If the value to assign is outside the range of target:
 - Wrap around \rightarrow no hardware

OVERFLOW: SATURATION

- If the value to assign is outside the range of target:
 - Saturation (various modes) \rightarrow extra hardware
SystemC

• Open source standard for system-level modeling, based on C++ class libraries and a simulation kernel.

• Provides modeling from system level down to (mainly) register-transfer level (RTL).

• For more details, see the Accellera web site (non-profit organization for system-level design):

 http://www.accellera.org/

SystemC FIXED-POINT DATA TYPES

• Declaration (signed and unsigned version):

 `sc_fixed<wl, iwl, q_mode, o_mode, n_bits> x;`
 `sc_ufixed<wl, iwl, q_mode, o_mode, n_bits> x;`

• `wl`: word length, `iwl + fwl`
• `iwl`: integer word length
• `q_mode`: (optional) quantization mode, default is truncation
• `o_mode`: (optional) overflow mode, default is wrap around
• `n_bits`: (optional) number of bits for overflow (`n_bits` are saturated, the others are wrapped around)

• `sc_fix/sc_ufix` data types can be resized at run time

SystemC FIXED-POINT CODE EXAMPLE

```c
sc_fixed<6, 2> a;
sc_fixed<6, 4> b;
sc_fixed<3, 2, SC_RND, SC_SAT> c;

c = a + b;
```

• Implementation:
 – Calculate sum at full precision
 – Perform quantization processing
 – Perform overflow processing

ALGORITHMIC C

• Algorithmic C is a library for fixed-point arithmetic (and more) in C, developed by Siemens (former Mentor Graphics) and donated as open source:

 https://github.com/hlslibs/ac_types/

• Faster than SystemC
• Supported by the Siemens HLS tool Catapult (available in the CAES Group)
THE FIXED-POINT DESIGN PROBLEM (1)

- Mathematical descriptions of DSP algorithms often assume infinite precision in the signal representation.
- The closest approximation of infinite precision in computers is the floating-point number representation.
- Floating-point hardware is expensive and is avoided if possible.
- Implementations therefore use fixed-point hardware.

- Problem: which fixed-point formats should be used to obtain the cheapest implementation of the original algorithm?

THE FIXED-POINT DESIGN PROBLEM (2)

- One should look at:
 - The dynamic range: avoid overflow and therefore know peak values.
 - The accuracy: quantization levels.

BOUGANIS FIXED-POINT FORMAT

- Considers signed numbers only; sign bit is not counted in size.

PEAK-VALUE ESTIMATION

- Related to the fact that signal magnitude may grow due to addition or multiplication
- In a stable system, the signal cannot grow indefinitely
- Question is: what is the maximal value encountered for each signal in the system?
- Issue is not directly related to accuracy, the number of bits used for each signal.
PEAK-VALUE ESTIMATION METHODS

• Analytic:
 - examine transfer functions

• Data-range propagation:
 - Interval analysis
 - Compute result interval from input intervals
 - Tends to overestimate requirements

• Simulation-driven analysis:
 - Monitor values produced during a representative simulation and record extremes
 - Use a safety factor > 1

ANALYTIC PEAK-VALUE ESTIMATION

• Consider an FIR filter:

 \[y[n] = \sum_{k=0}^{N} h[k] \cdot x[n-k] \]

• Then, an upper bound for the output value is found by:

 \[y_{\text{peak}} = x_{\text{peak}} \sum_{k=0}^{N} |h[k]| \]

• For recursive filters, a similar approach can be followed, starting from a state-space representation.

INTERVAL ANALYSIS (1)

• Represent each value \(x \) as an interval: \(\tilde{x} = [x^-, x^+] \)

• For each arithmetic operation, one can calculate the result interval from the operand intervals. For example:

 \[\tilde{x} + \tilde{y} = [x^- + y^-, x^+ + y^+] \]

 \[\tilde{x} \tilde{y} = \min(x^-, y^-, x^+, y^-), \max(x^-, y^-, x^+, y^-)) \]

INTERVAL ANALYSIS (2)

Beware: this is no FIR filter, but a fantasy design.
WORD-LENGTH PROPAGATION

<table>
<thead>
<tr>
<th>Type</th>
<th>Propagation rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAIN</td>
<td>For input ((n_a, p_a)) and coefficient ((n_b, p_b)):</td>
</tr>
<tr>
<td></td>
<td>(p_j = p_a + p_b)</td>
</tr>
<tr>
<td></td>
<td>(n_j = n_a + n_b)</td>
</tr>
<tr>
<td>ADD</td>
<td>For inputs ((n_a, p_a)) and ((n_b, p_b)):</td>
</tr>
<tr>
<td></td>
<td>(p_j = \max(p_a, p_b) + 1)</td>
</tr>
<tr>
<td></td>
<td>(n_j = \max(n_a, n_b + p_a - p_b) - \min(0, p_a - p_b) + 1)</td>
</tr>
<tr>
<td></td>
<td>(for (n_a > p_a - p_b) or (n_b > p_b - p_a))</td>
</tr>
<tr>
<td>DELAY or FORK</td>
<td>For input ((n_a, p_a)):</td>
</tr>
<tr>
<td></td>
<td>(p_j = p_a)</td>
</tr>
<tr>
<td></td>
<td>(n_j = n_a)</td>
</tr>
</tbody>
</table>

QUANTIZATION: NOISE MODELING (1)

• Suppose signal with fixed-point format \((n, 0)\) is multiplied with another signal with fixed-point format \((n, 0)\) and the result is truncated to \(n\) bits.

• Error ranges from 0 to \(2^{-2n} - 2^{-n} \approx -2^{-n}\)

• Uniform distribution of error: \(p(e) = 2^n, \ e \in [-2^{-n}, 0]\)

• Consider multiplication; is the error really uniformly distributed?

NOISE MODELING (2)

• Average error is: \(-2^{-(n+1)}\)

• Variance:

\[
\sigma^2 = \int_{-2^{-n}}^{0} 2^n \left[e + 2^{-(n+1)} \right]^2 \, de = \frac{1}{12} 2^{-2n}
\]

NOISE PROPAGATION

• In linear time-invariant (LTI) systems, one can analytically calculate the effect of quantization in input or intermediate nodes to noise on the output.

• In case of non-linear systems, one could linearize the system by means of Taylor expansion (a similar approach as a small-signal model used in electronics).

• Noise propagation methods have the advantage of reduced computational complexity with respect to a simulations-only approach.
FIXED-POINT OPTIMIZATION PROBLEM

• Define a performance measure. Examples:
 – SNR at the output of a filter
 – Bit-error rate in a communication system
• Define a cost measure, such as the area of the circuit.
• Goal is to satisfy a performance requirement at minimal cost by optimally choosing a fixed-point format for each signal in the system.
• The most practical approach is to start with a floating-point model and gradually replace the data types by fixed-point types while monitoring performance by simulations.

SCHEDULING, ETC.

• Sharing of resources across multiple clock cycles puts additional constraints on the fixed-point format of signals.