UT. IMPLEMENTATION OF DSP

March 8, 2024

OUTLINE

- · CORDIC algorithm:
 - Rotation and vectoring modes
- · CORDIC architectures
- Introduction to Project GFS
- Applications of CORDIC

© Sabih H. Gerez, University of Twente, The Netherlands

THE CORDIC ALGORITHM AND

CORDIC ARCHITECTURES

Implementation of Digital Signal Processing

Sabih H. Gerez University of Twente

© Sabih H. Gerez, University of Twente, The Netherlands

March 8, 2024

REFERENCES

- Andraka, R., "A Survey of CORDIC Algorithms for FPGA-Based Computers", 6th International Symposium on Field Programmable Gate Arrays, Monterey, CA., pp. 191-200, (1998).
- Loehning, M., T. Hentschel and G. Fettweis, "Digital Down Conversion in Software Radio Terminals", 10th European Signal Processing Conference, EUSIPCO 2000, pp. 1517-1520, (2000).

March 8, 2024

WHAT IS CORDIC?

- CORDIC: abbreviation of <u>coordinate rotation digital computer</u>.
- First publication by Volder, 1959.
- A method from the field of *computer arithmetic* allowing for the efficient implementation of a wide range of computations.

© Sabih H. Gerez, University of Twente, The Netherlands

© Sabih H. Gerez, University of Twente, The Netherlands

VECTOR ROTATIONS (1)

- Consider a sequence of rotations of a vector $(x^{(i)}, y^{(i)})^T$ rotated by α_i to give vector $(x^{(i+1)}, y^{(i+1)})^T$.
- So: $\begin{bmatrix} x^{(i+1)} \\ y^{(i+1)} \end{bmatrix} = \begin{bmatrix} \cos(\alpha_i) & -\sin(\alpha_i) \\ \sin(\alpha_i) & \cos(\alpha_i) \end{bmatrix} \begin{bmatrix} x^{(i)} \\ y^{(i)} \end{bmatrix}$
- After rewrite: $\begin{bmatrix} x^{(i+1)} \\ y^{(i+1)} \end{bmatrix} = \cos(\alpha_i) \begin{bmatrix} 1 & -\tan(\alpha_i) \\ \tan(\alpha_i) & 1 \end{bmatrix} \begin{bmatrix} x^{(i)} \\ y^{(i)} \end{bmatrix}$
- If $\tan(\alpha_i)$ is chosen such that $\tan(\alpha_i) = d_i 2^{-i}$, with $d_i = \pm 1$, then the rotations can be executed without multiplications except for initial factor $\cos(\alpha_i) = \frac{1}{\sqrt{1+2^{-2}i}}$

© Sabih H. Gerez, University of Twente, The Netherlands

March 8, 2024

VECTOR ROTATIONS (2)

- If $tan(\alpha_i) = d_i 2^{-i}$, this means: $\alpha_i = d_i arctan(2^{-i})$
- For an arbitrary angle α , $-\frac{\pi}{2} \le \alpha \le \frac{\pi}{2}$, the angle can then be decomposed as:

$$\alpha = \sum_{i=0}^{n} d_i \arctan(2^{-i})$$

· Angles involved:

i	0	1	2	3	4	5	6	7	8
2^{-i}									1/256
$arctan(2^{-i})[deg]$	45.0	26.6	14.0	7.1	3.6	1.8	0.9	0.4	0.2

© Sabih H. Gerez, University of Twente, The Netherlands

March 8 202

VECTOR ROTATION EXAMPLE (1)

• The 8 subsequent rotations for a rotation of 15 degrees are:

i	0	1	2	3		5	6	_	8
2^{-i}	1	1/2	1/4	1/8	1/16	1/32	1/64	1/128	1/256
$arctan(2^{-i})$	45.0	26.6	14.0	7.1	3.6	1.8	0.9	0.4	0.2
d_i	1	-1	-1	1		-1	1	1	1
$\sum \alpha_i$	45.0	18.4	4.4	11.5	15.1	13.3	14.2	14.7	14.9

- The arctangent values can be precomputed and stored in a look-up table (LUT), say L(i).
- The d_i depend on the required rotation angle.

March 8, 2024

VECTOR ROTATION EXAMPLE (2)

Note that the vector length is growing at each step.

IMPLEMENTATION OF DSP

- Can one approximate an angle up to any degree of precision by increasing the number of rotation steps or is there any limit to the precision that can be achieved?
- · One can indeed achieve any degree of precision as the sum of the angles in steps i + 1 to ∞ is larger or equal to the angle in step *i* for any *i*.
- Clear from table for small i.
- For large i, $\arctan(2^{-i}) \approx 2^{-i}$,

$$\sum_{n=i+1}^{\infty} 2^{-n} = 2^{-(i+1)} \sum_{n=0}^{\infty} 2^{-n} = 2^{-i}$$

© Sabih H. Gerez, University of Twente, The Netherlands

ANGLE ACCUMULATION

• Keep track of total rotation angle in an angle accumulator.

$$z^{(i+1)} = z^{(i)} - d_i L(i)$$

- The angle accumulator can be used to determine d_i:
 - Initialize $z^{(0)} = \alpha$.
 - Factor d_{i+1} becomes 1 when $z^{(i)} \ge 0$ and -1 otherwise.

i	0	1	2	3	4	5	6	7	8	9
2^{-i}	1	1/2	1/4	1/8	1/16	1/32	1/64	1/128	1/256	1/252
$arctan(2^{-i})$	45.0	26.6	14.0	7.1	3.6	1.8	0.9	0.4	0.2	0.1
d_i	-	1	-1	-1	1	1	-1	1	1	1
$z^{(i)}$	15.0	-30.0	-3.4	10.6	3.5	-0.1	1.7	8.0	0.3	0.1

© Sabih H. Gerez, University of Twente, The Netherlands

CORDIC EQUATIONS SUMMARY

Original equations were:

$$\begin{bmatrix} \dot{x}^{(i+1)} \\ y^{(i+1)} \end{bmatrix} = \cos(\alpha_i) \begin{bmatrix} 1 & -\tan(\alpha_i) \\ \tan(\alpha_i) & 1 \end{bmatrix} \begin{bmatrix} x^{(i)} \\ y^{(i)} \end{bmatrix}$$

Making use of the special values for the tangent, leaving out the multiplication by the cosine and combining with angle accumulation, one gets:

$$x^{(i+1)} = x^{(i)} - d_i 2^{-i} y^{(i)}$$

$$y^{(i+1)} = d_i 2^{-i} x^{(i)} + y^{(i)}$$

$$z^{(i+1)} = z^{(i)} - d_i L(i)$$

March 8, 2024

ROTATION-MODE CORDIC

- Goal is to rotate vector by angle α .
- Initialization:

$$x^{(0)} = x$$
$$y^{(0)} = y$$
$$z^{(0)} = \alpha$$

Final result:

$$x^{(n)} = K(x\cos(\alpha) - y\sin(\alpha))$$
$$y^{(n)} = K(x\sin(\alpha) - y\cos(\alpha))$$
$$z^{(n)} = 0$$

· Where:

$$K = \prod_{i=1}^{n} \sqrt{1 + 2^{-2i}}$$

- *K* converges to 1.647.
- · Conclusion: the result vector is rotated but scaled version of original vector.

THE CORDIC ALGORITHM

March 8, 2024

VECTORING-MODE CORDIC

- Determine d_i by an alternative rule: $d_i =$ -1 when $v^{(i)} > 0$ and $d_i = +1$ when $y^{(i)} \leq 0$.
- Initialization:

$$x^{(0)} = x$$
$$y^{(0)} = y$$
$$z^{(0)} = 0$$

Final result:

$$x^{(n)} = K\sqrt{x^2 + y^2}$$

$$y^{(n)} = 0$$

$$z^{(n)} = \arctan\left(\frac{y}{x}\right)$$

· This means that the initial vector has been rotated (and scaled) onto the X-axis, while the angle with the X-axis has been computed as well.

© Sabih H. Gerez, University of Twente, The Netherlands

BASIC APPLICATIONS OF CORDIC

- Arctangent, vector-magnitude calculation and rectangular-topolar conversion: direct result of vectoring-mode CORDIC.
- Polar-to-rectangular conversion, i.e. from (r, θ) to (x, y):
 - Set $x^{(0)} = r$, $y^{(0)} = 0$, and $z^{(0)} = \theta$ in rotation mode.
 - Result will be $x = x^{(n)} = Kr\cos(\theta)$, $y = y^{(n)} = Kr\sin(\theta)$.
 - Correction for scaling by K may be necessary (does not require a fullfledged multiplier as *K* is constant).
- Sine or cosine calculation:

IMPLEMENTATION OF DSP

THE CORDIC ALGORITHM

- See above, set $x^{(0)} = 1/K$. Then $x^{(n)} = \cos(\theta)$ and $y^{(n)} = \sin(\theta)$.
- Beyond the scope of this course: multiplication, division, hyperbolic functions, etc. (see paper by Andraka).

© Sabih H. Gerez, University of Twente, The Netherlands

IMPLEMENTATION OF DSP THE CORDIC ALGORITHM

ARCHITECTURE ITERATIVE CORDIC

$$x^{(i+1)} = x^{(i)} - d_i 2^{-i} y^{(i)}$$

$$y^{(i+1)} = d_i 2^{-i} x^{(i)} + y^{(i)}$$

$$z^{(i+1)} = z^{(i)} - d_i L(i)$$

Controller should take care of initializations, add/subtract decisions, number of iterations, etc.

March 8, 2024

UNROLLED ARCHITECTURE

- The iterative architecture requires one clock cycle per iteration.
- It requires a *barrel shifter* to shift operand over a variable number of positions.
- One can also *unroll* the architecture to perform all operations in a single clock cycle:
 - Amounts to instantiate new hardware for each iteration.
 - Possibly adding pipelining if the critical path becomes too long.
 - The barrel shifter is no longer necessary: each stage in the hardware has a fixed shift which costs just wires.
 - One could also unroll the architecture partially.

March 8, 2024 THE CORDIC ALGORITHM

March 8, 2024

DESIGN EXAMPLE: GFSK RECEIVER

- · What is GFSK?
 - Gaussian frequency shift keying
 - Method for digital transmission based on frequency modulation (FM).
 - To transmit a 1 carrier frequency is slightly increased and to transmit a 0 the frequency is slightly decreased (or vice versa).
 - The transition steps are smoothed by a Gaussian filter.
 - Found in many standards such as Bluetooth and DECT.
 - Proposed version uses parameters not related to any standard.

© Sabih H. Gerez, University of Twente, The Netherlands

GFSK RECEIVER DESIGN APPROACH

- Model entire system: transmitter, receiver, and a channel adding noise (AWGN).
- Leave out analog circuitry for upconversion to RF and downconversion back to IF.
- Use IT++ to set up testbench.

IMPLEMENTATION OF DSP

- The testbench computes *bit error rates* (BERs) for different *signal-to-noise ratios* (SNRs).
- Goal is to preserve BER performance when designing hardware.

© Sabih H. Gerez, University of Twente, The Netherlands

IMPLEMENTATION OF DSP ■ 19
THE CORDIC ALGORITHM ■ March 8, 2024

Modulated signal has 16 samples per transmitted bit.

THE CORDIC ALGORITHM

March 8, 2024

Bit Stream

GFSK
Modulator

GFSK
Demodulator

TB

TB

DUV = design under verification

TVC = test-vector controller; TB = testbench

IMPLEMENTATION OF DSP

IMPLEMENTATION ASPECTS

- Projects focus on designing in Arx.
- Testbenches for generated C++ and VHDL will be provided.
- As C++ and VHDL behave exactly the same, most simulations will be done in C++ (simulation speed for BER simulations is important).
- C++ testbenches make use of IT++, an open-source library for telecom/signal processing:
 - http://itpp.sourceforge.net
 - It provides Matlab-style programming in C++, so vectors, matrices, etc. and lots of powerful functions to manipulate them.

© Sabih H. Gerez, University of Twente, The Netherlands

GFSK: MODULATION IN FORMULAE

- The modulated signal: $s(t) = A\cos(\omega_{\text{IF}}t + \phi(t))$
- where:
 - -A is the constant amplitude
 - $-\omega_{\text{IF}}$ is the *intermediate frequency* (acts as carrier frequency)
 - $-\phi(t)$ is the phase deviation, derived from the bit stream
- The phase deviation:

 $\phi(t) = h\pi \int_{-\infty}^{t} \sum_{i} a_{i}g(\tau - iT)d\tau$

- where:
 - h is the modulation index

IMPLEMENTATION OF DSP

Study the handout for details!

March 8, 2024

- -g(t) is a Gaussian-filtered square wave
- $-a_i$ is 1 for a transmitted **1** and -1 for a transmitted **0**.

© Sabih H. Gerez, University of Twente, The Netherlands

THE CORDIC ALGORITHM March 8, 2024

CORDIC FOR DOWNCONVERSION (1)

- Digital downconversion is a common operation in digital radio receivers. It is used to shift the carrier frequency of a radio signal (e.g. from IF to baseband) or correct for frequency offset.
- This is done by multiplying an input signal by a sine and cosine of some frequency. Think of the GFSK demodulator.

DEMODULATOR BLOCK DIAGRAM

The 16 samples per transmitted bit are first reduced to 4 and later back to 1.

THE CORDIC ALGORITHM

March 8, 2024

CORDIC FOR DOWNCONVERSION (2)

CORDIC FOR DOWNCONVERSION (3)

© Sabih H. Gerez, University of Twente, The Netherlands

© Sabih H. Gerez, University of Twente, The Netherlands

CORDIC FOR DOWNCONVERSION (4)

© Sabih H. Gerez, University of Twente, The Netherlands