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Abstract. This paper addresses the efficient implementation of high-
performance signal-processing algorithms. In early stages of such designs
many computation-intensive simulations may be necessary. This calls for
hardware description formalisms targeted for efficient simulation (such
as the programming language C). In current practice, other formalisms
(such as VHDL) will often be used to map the design on hardware by
means of logic synthesis. A manual, error-prone, translation of a descrip-
tion is then necessary.
The line of thought of this paper is that the gap between simulation
and synthesis should not be bridged by stretching the use of existing
formalisms (e.g. defining a synthesizable subset of C), but by a language
dedicated to an application domain. This resulted in Arx, which is meant
for signal-processing hardware at the register-transfer level, either using
floating-point or fixed-point data. Code generators with knowledge of
the application domain then generate efficient simulation models and
synthesizable VHDL.
Several designers have already completed complex signal-processing de-
signs using Arx in a short time, proving in practice that Arx is easy
to learn. Benchmarks presented in this paper show that the generated
simulation code is significantly faster than SystemC.

1 Introduction

In the last four decades many hardware description languages (HDLs) have been
proposed, each having their strengths and weaknesses. HDLs serve one or more
of the following goals: specification, formal verification, simulation, and synthe-
sis. Ideally, one would use one and the same description language for all goals. In
practice, however, the different goals are difficult to satisfy: code written in syn-
thesizable VHDL (see e.g. [1]) will be much slower to simulate than code written
in C, while code written in e.g. SystemC [2] in a style to optimize simulation
speed is not likely to be synthesizable.

In practice, multiple HDLs are used to overcome this problem. C is often used
to create a first executable model of the system to be designed. Such a model
is untimed [3] in general. It has the advantage of fast execution and allows
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extensive elaboration of the system’s performance. Once the model has been
refined to the point that a hardware architecture can be specified, the design is
manually recoded in a synthesizable HDL, such as VHDL. This is a cumbersome
and error-prone process.

This paper addresses the problem of conflicting language requirements and
proposes a solution for the domain of register-transfer level (RTL) descriptions
of signal processing algorithms. The solution consists of a specification language
called Arx in combination with tools. These tools can convert designs written in
Arx to either C code for simulation or VHDL code for synthesis. The generated
C code is optimized for simulation speed while the VHDL code is optimized for
synthesis. The proposed approach has the advantage that a thorough design-
space exploration can be performed due to high simulation speed, while it is not
necessary to rewrite the simulation code by hand in order to synthesize hardware.

This paper is organized as follows. Section 2 describes our requirements for
a language for simulation and synthesis and reviews some existing languages. In
Section 3 the Arx tools and language are introduced. Section 4 describes the C
and VHDL code generators. The results of the simulation speed benchmarks are
discussed in Section 5. In Section 6, some implementation results are discussed.

2 Languages for Simulation and Synthesis

In this section we present a list of requirements that we feel should be met
for languages (and tools) for fast simulation and synthesis of signal processing
algorithms. Subsequently, we review some existing design languages.

2.1 Requirements

The design goal of the Arx toolset is to simplify the hardware design for fixed-
point signal processing algorithms. The toolset has been designed with the fol-
lowing requirements in mind:

1. High performance simulation must be possible because the signal processing
algorithms typically require computation-intensive simulations.

2. The designs should be made at the register-transfer level. Synthesis from
behavioral descriptions has the advantage of higher design productivity but
results in implementations with an area overhead as well as suboptimal speed
and power. This is due to the fact that the design is mapped on some pre-
defined hardware template which limits the design freedom.

3. The entire language should be synthesizable, making it unnecessary to isolate
the synthesizable language subset.

4. Fixed-point data types and fixed-point arithmetic operators must be sup-
ported because they are extensively used in signal processing algorithms.

5. The toolset must be text based, giving full design freedom to designers.
Graphical toolsets limit the design freedom to the available building blocks
and become cumbersome when designs are control dominated or have com-
plex data paths.
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6. In order to take advantage of the available highly optimized C compilers,
the toolset should emit C code for the simulator instead of machine code.

2.2 Language Overview

VHDL was originally designed as a powerful simulation language [4] meant to
have an event-driven simulation engine. Such a simulation approach offers the
possibility to model hardware at various levels of abstraction but is less suitable
for computation-intensive simulations of signal-processing systems. The overhead
involved with run-time scheduling of events can cause a considerable increase in
the simulation time. Synthesis from VHDL was introduced later. It required the
definition of a synthesizable subset [1] as not all language constructs could be
associated with hardware in a direct way. In synthesizable VHDL, one is prac-
tically forced to use the standardized std logic data type and types derived
from it. This 9-valued data type is very useful to trace design errors as it con-
tains special values for uninitialized and undefined signals. This nice property,
however, also contributes to slowing down simulations.

General-purpose programming languages have been combined with libraries
or extensions for hardware simulation and synthesis. A prominent example of this
approach is SystemC. SystemC is a C++ class library that provides functionality
for system-level design. Abstraction levels range from RTL to the system-level.
A synthesizable subset has been defined to enable hardware design in SystemC.
The definition of such a subset is required because of the great scope of SystemC,
i.e. constructs required for high-level modeling do not map to the RTL domain.
The great scope and flexibility of SystemC are its strenghts. However, when
the scope of a design is limited to the domain of RTL, we feel that a simple
domain-specific language is better suited for the task. Such an approach has the
advantage of having a clean language of which all features can be used at wish.
The effort to learn the SystemC library and the synthesizable subset is as high
as or higher than the effort to learn a small dedicated language [5].

Synchronous languages [6] combine deterministic concurrency with synchrony
(i.e. time advances in lockstep with one or more clocks). Lustre [7] and Esterel
[8] are examples of such languages that have been successfully used for hardware
simulation and synthesis [9]. Arx is also a synchronous language but differs from
the ones mentioned because it combines concurrent statements and sequential
statements in a way similar to VHDL. In Arx, unlike the other synchronous
languages, registers are explicitly instantiated. Because Arx had been specifically
designed for RTL design, the notion of synchrony is linked to the concept of
registers.

3 The Arx Toolset

3.1 The Arx Language

Arx enforces a synchronous design style. The clock is implicit in the design and
is only apparent through the registers. In order to guarantee correct behavior,
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systems written in Arx are not allowed to contain zero-delay loops. Arx has two
types of data objects: registers and variables. When a register object is declared,
its reset value must also be specified. Assignments to registers are concurrent
while assignments to variables are sequential.

A design is implemented as a set of components and functions. Conceptu-
ally, components operate concurrently. Only components can contain registers.
Functions are purely combinational. Both can be parameterized with generic
types and constants. Generic types enable an efficient refinement methodology
by allowing reuse of the same code in, for example, floating point and various
fixed-point implementations. Functions can also be declared ‘external’, which
means that the function is implemented in the target language (currently C or
VHDL). This provides the designer with extensive library support at the algo-
rithmic verification level. When the design is further refined into a synthesizable
system, the external functions are replaced with synthesizable native Arx func-
tions.

Table 1. Arx data types.

type description

bit 1 or 0
bitvector vector of bits
boolean true or false

integer integer values
real floating-point
signed signed fixed-point
unsigned unsigned fixed-point

The available data types include floating-point and fixed-point. Table 1 presents
a list of all Arx data types. Additionally, users can define type aliases and
enumerated types. For both signed and unsigned data types the number of
bits is specified in the same way as the SystemC sc fixed data type [10],
i.e. signed(wl,iwl) and unsigned(wl,iwl), where wl denotes the total word
length and iwl denotes the number of integer bits. Arx supports all the overflow
and quantization modes defined in SystemC [11].

Arx supports a large set of arithmetic operations. The conditional statements
if and case and the loop statement for are also included in the language. Arrays
can be constructed and individual bits or slices of vectors can be selected with
special operators.

Figure 1 shows Arx code for an accumulator with generic types. The hardware
block diagram is depicted in Fig. 2. This example also shows the difference
between registers and variables. The value of r at line 19 refers to the current
value of the register because it occurs on the right-hand-side of the assignment
expression. When registers are referenced at the left-hand-side of an assignment,
such as at line 18, they refer to the register value for the next clock cycle.
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01: component acc

02: T_io : generic type

03: T_sum : generic type

04: clear : in bit

05: data_in : in T_io

06: data_out : out T_io

07:

08: variable

09: sum : T_sum

10: register

11: r : T_sum = 0

12: begin

13: if clear == 1

14: sum = data_in

15: else

16: sum = r + data_in

17: end

18: r = sum

19: data_out = r

20: end

Fig. 1. Arx code for an accumulator example.

data in

data out

clear

+

Fig. 2. Block diagram of the accumulator example.
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3.2 The Workflow

The Arx language and toolset enable a stepwise refinement design methodology
that starts with a high-level description and iteratively reaches an optimized
synthesizable description. At each stage of the design, the tools can generate C
code for a simulator. This simulator can be used for high-speed verification and
evaluation of the design and algorithms.

Figure 3 shows the typical Arx workflow. The high-level system description
is used for algorithmic verification. At this level all data types, including floating
point, are allowed. The generated simulator is neither bit-true nor clock-cycle-
true. Subsequently, the design is further refined into a bit-true description that
restricts the data types to fixed-point. At this step, the simulator is bit-true but
not clock-cycle-true. The next refinement step transforms the design into RTL
code. RTL in the context of Arx amounts to distinguishing between registers
and wires (or variables) and assuming the presence of an implicit clock that
controls the register updates. The refinement of the design leads to a careful
placement of registers in the signal flow that eventually results in a clock-cycle
true specification. Given this RTL description, the tools can generate both a fast
bit-true and clock-cycle-true simulator as well as VHDL code for synthesis.

functional Arx code

VHDL

bit−true, clock−cycle−true Arx code

bit−true Arx code

synthesis

verification

C−based simulator

Fig. 3. Arx workflow.

4 Code Generation

4.1 Fixed-point Data Types for C Generation

For fast simulation of fixed-point arithmetic, the efficient mapping of fixed-point
data-types on the host machine is crucial. SystemC offers two different fixed-
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point class implementations. The limited-precision implementation maps the
fixed-point data-types on the 53 mantissa bits of the native C++ floating point
type. This restricts the size of fixed-point to 53 bits. Another disadvantage of
this approach is that fixed-point types with a small number of bits, are mapped
on 64-bit floating-point numbers which require extra memory bandwidth. The
other option offered by SystemC is the unlimited fixed-point implementation
that is based on concatenated data containers.

We chose to implement the fixed-point mapping in a similar way as described
in [12]. All fixed-point values are mapped on the native machine word-size, which
is 32-bit or 64-bit for most general purpose processors. If a fixed-point type
exceeds this word-size, the type is mapped on a number of concatenated words.

SystemC uses operator overloading to implement arithmetic operations on
fixed-point data types. The Arx code generation tools generate speed optimized
code for each individual operation. We do not use global optimization to reduce
the number of shift operations as is proposed in [12] because the authors indicate
that the gains are minimal.

4.2 Scheduling for the C Backend

A hardware design is conveniently modeled by a set of parallel communicating
processes. Conceptually, an Arx component corresponds to such a process. For
simulation, the Arx tools convert this concurrent process model to a sequential
program by appropriately scheduling the processes. Process scheduling can be
done dynamically by a run-time scheduler or statically by a compiler. Because of
the synchronous nature of the Arx language, the C code generator tools can use
static scheduling. Contrary to static scheduling, dynamic scheduling as used in
SystemC incurs a run-time overhead. FastSysC [13] is a replacement for the Sys-
temC simulation engine that uses acyclic scheduling instead of dynamic schedul-
ing. This scheduling approach reduces the run-time overhead of the scheduler.
FastSysC is designed for cycle-level simulators and only supports a subset of the
SystemC syntax. We analyse the impact on the simulation performance of these
three scheduling methods in Sect. 5.

The first step in the Arx C generator is to instantiate all components. Sub-
sequently, the component hierarchy is flattened (i.e. component boundaries are
removed). Next, constant values are propagated and loops are unrolled. After
that, the scheduling phase begins. For each clock cycle the Arx simulator needs
to compute the new value of each register and all top-level outputs, based on the
current register values and all top-level inputs. Hence, the current value of all
registers and all top-level inputs are at the start of the data-flow graph, and the
next value for all registers and all top-level outputs are end points of the graph.
Because the Arx language is synchronous and zero-delay cycles are not permit-
ted, the graph will not have cycles. Therefore, the scheduling is straightforward.
Currently, Arx only supports a single clock but static scheduling of synchronous
programs with multiple clocks is possible (see e.g. [14]).
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4.3 Generated C Code

The C code generator creates code for a C++ class with two member functions:
run and reset. The run function has the same inputs and outputs as the top-
level component of the design. This function should be called for every clock-cycle
of the simulation. The reset function assigns to each register its reset value. A
SystemC wrapper is automatically created to enable easy integration with the
SystemC Verification Library.

There are a number of differences between SystemC code and the C code gen-
erated by Arx that have an impact on simulation performance. Contrary to Arx
C code, SystemC code uses virtual methods which result in a run-time overhead.
Another difference is the number of function calls. Because all the Arx simula-
tion code is located in the run function, only a single function call is executed
for the simulation of a single cycle. For the SystemC simulator the number of
function calls is a lot higher and depends on the number of components. Because
the Arx simulation code is not spread out across multiple functions in different
files, the C compiler can use more aggressive optimizations.

4.4 VHDL Code Generation

The VHDL code generator maintains the component hierarchy of the original
design. Fixed-point data types are mapped on the signed and unsigned data
types defined in the ieee.numeric std package. An optimized VHDL package
has been developed for the implementation of the supported overflow and quan-
tization modes. The testbench created for the verification of the C code can be
reused for verification of the VHDL provided that the VHDL simulator has an
interface for C/SystemC co-simulation.

5 Benchmark Results

Two FIR filter implementations have been implemented to compare the sim-
ulation performance of Arx, SystemC and FastSysC. The first design (FIR1)
implements an unfolded version of a 16-tap FIR filter. This implementation is
modeled as a single component and processes one sample per clock cycle. The
code for the Arx and SystemC versions of the filter are shown in Fig. 4 and
Fig. 5 respectively (notice the compactness of the Arx code). The FastSysC ver-
sion of the code differs only slightly from the SystemC version and is therefore
not shown.

The second design (FIR2) is also a fully unfolded 16-tap FIR filter, How-
ever, in this design every adder, multiplier and register is modeled as a separate
component. Therefore, instead of one filter component, this version has 47 com-
ponents (16 multipliers, 15 adders and 16 registers) that all need to be scheduled.
Both FIR1 and FIR2 implement exactly the same filter. Hence, any difference
in simulation performance can be attributed to the scheduler.
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component fir

T_io : generic type

T_sum : generic type

T_coeff : generic type

data_in : in T_io

data_out : out T_io

constant

N : integer = 16

coeff : array[N] of T_coeff = { ... }

register

delay : array[N] of T_io = 0.0

variable

prod : T_io

begin

delay[0] = data_in * coeff[N-1]

for i in 1:N-1

prod = data_in * coeff[N-1-i]

delay[i] = convert(T_sum, prod + delay[i-1])

end

data_out = delay[N-1]

end

Fig. 4. Arx code for the unfolded FIR filter.

The FIR designs have been benchmarked with both fixed-point and floating-
point data types. The floating-point version uses float for SystemC and Fast-
SysC and real for Arx. All operations are floating-point and there are no type
conversions. In case of the fixed-point version, all data types are signed 10-bit
fixed-point. The result of the addition operation is saturated in order to stay
within the 10-bit range. There is no FastSysC fixed-point version because we are
only interested in the performance of the scheduler of FastSysC.

In order to benchmark the performance of the SystemC fixed-point data types
separately from the SystemC scheduler, a special version of the fixed-point FIR1
benchmark was made that does not use the SystemC scheduler. Instead of using
signals for input and output, this implementation uses function parameters.

The SystemC implementations use the synthesizable subset of SystemC, i.e.
they use SC METHOD and signals for communication between logic blocks. In order
to reduce the simulation overhead, internal signals are declared as normal local
variables and not as SystemC signals. Version 2.1 of the SystemC library and
version 1.1 of the FastSysC simulator were used for the benchmarks.

The simulation times for the benchmarks are summarized in Table 2. The
results have been scaled relative to the fastest simulation. The results show that
the simulation times for the Arx versions of FIR1 and FIR2 are identical in the
floating-point case and very close for the fixed-point data types. This shows that
there is no extra scheduling overhead for the Arx simulator when the number of
components is increased from 1 (FIR1) to 47 (FIR2).
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SC_MODULE(fir) {

sc_in<bool> clock;

sc_in<bool> reset;

sc_in<T_io> data_in;

sc_out<T_io> data_out;

T_coeff coeff[NR_TAPS];

T_sum delay_reg[NR_TAPS];

T_sum delay_nxt[NR_TAPS];

SC_CTOR(fir)

{

SC_METHOD(update);

sensitive_pos << clock;

coeff[0] = ...

...

};

void update()

{

int i;

T_io input, output, prod;

if (reset.read()) {

for (i=0; i<NR_TAPS; i++) {

delay_reg[i] = 0;

}

}

else {

input = data_in.read();

/* compute next values */

delay_nxt[0] = (T_io)(input * coeff[NR_TAPS-1]);

for (i=1; i<NR_TAPS; i++) {

prod = (T_io)(input * coeff[NR_TAPS-1-i]);

delay_nxt[i] = (T_sum)(prod + delay_reg[i-1]);

}

/* update registers */

for (i=0; i<NR_TAPS; i++) {

delay_reg[i] = delay_nxt[i];

}

}

output = delay_reg[NR_TAPS-1];

data_out.write(output);

}

}

Fig. 5. SystemC code for the unfolded FIR filter.
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Table 2. Simulation time results.

simulator data type FIR1 FIR2

Arx floating-point 1.00 1.00
SystemC floating-point 23.5 201
FastSysC floating-point 2.63 45.3
Arx fixed-point 2.19 2.46
SystemC fixed-point 467 1263
SystemC (without scheduler) fixed-point 385 -

In case of the floating-point SystemC benchmarks, the simulation time for
FIR2 is about 8 times longer than the simulation time for FIR1. This shows
that the overhead of the dynamic scheduler increases when the number of com-
ponents increases, which is to be expected. For the FastSysC benchmarks the
increase in simulation time between FIR1 and FIR2 is roughly a factor of 17.
This relative increase is larger than that for the SystemC benchmarks, but both
FIR1 and FIR2 floating-point FastSysC simulation times are respectively 9 and
4 times faster than their SystemC counterparts. Compared to the results for the
floating-point Arx benchmarks, the FastSysC benchmarks are 2.6 and 45.3 times
slower while the SystemC benchmarks are 23.5 and 201 times slower. We can
conclude that the FastSysC simulator is faster than the SystemC implementa-
tion but slower than the Arx simulator. The Arx simulator is one to two orders
of magnitude faster than the SystemC versions, depending on the number of
components in the simulation.

In order to compare the fixed-point data type implementations of SystemC
and Arx, we compare the Arx fixed-point FIR1 benchmark with the SystemC
FIR1 benchmark without scheduler. The simulation time results show that the
Arx version is two orders of magnitude faster than the SystemC implementation
without scheduler.

6 Implementation Results

Arx has successfully been applied to a number of designs, including an LDPC
decoder, a CDMA equalizer [15] and a MIMO MMSE equalizer. The goal of
efficient simulation has been met for these designs. The VHDL generated by
Arx was successfully mapped on an experimental fast prototyping setup with
an FPGA PCI board and also synthesized using modern ASIC standard-cell
libraries. The simulation efficiency of Arx has made it possible to explore larger
parts of the design space than usual.

7 Conclusions

In this paper we have briefly introduced the design language Arx and our work-
flow for simulation and synthesis. Arx has been created to enable synthesis and
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fast simulation of signal processing algorithms based on a single design descrip-
tion. For synthesis this description is transformed into VHDL, while C code is
generated for fast simulation.

In order to benchmark the simulation speed of the generated C code, two
FIR implementations have been realized using Arx, SystemC and FastSysC.
The benchmark results show that the Arx simulator is faster than both the Sys-
temC and FastSysC simulators. When we compare the fixed-point synthesizable
implementations written in Arx and SystemC, the Arx simulators are two or-
ders of magnitude faster than the SystemC versions. This speed advantage is
achieved through a faster implementation of the fixed-point arithmetic and the
use of static scheduling.
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