
NEURAL NETWORKS

GENETIC PROGRAMMING

1

February 24, 2000Sabih H. Gerez, University of Twente

GENETIC PROGRAMMING (GP)
* GP is an evolutionary computation method proposed by John Koza

around 1990.
* In genetic algorithms (GAs), a feasible solution is encoded as a

chromosome which is interpreted and assigned a fitness.
* In GP, the genetic manipulation is performed on executable pro-

grams rather than strings. The fitness of a program is derived from
the answers produced when the program is applied to test data.

* The ideal situation for the application of GP:
+ One needs a program that operates in some situation;
+ The situation is characterized by typical (or an exhaustive set of)

inputs and associated outputs;
+ GP yields the program. It then can be used in operational mode.

No programmer is necessary to write the program.

NEURAL NETWORKS

GENETIC PROGRAMMING

2

February 24, 2000Sabih H. Gerez, University of Twente

PROGRAM REPRESENTATION
* The programs in GP should be

represented in such a way that
manipulations such as cross-
over and mutation are possible.

* One cannot easily use text rep-
resentations for conventional
programming languages or as-
sembly code; manipulations
that preserve syntax and
executability would become
very complex.

* Trees are a much more suitable

representation. Subtrees cor-
respond to subprograms.
Crossover can e.g. be based
on exchanging subtrees be-
tween parents. Example:

�

a b c d

a� b c� d

(a� b) � (c * d)

NEURAL NETWORKS

GENETIC PROGRAMMING

3

February 24, 2000Sabih H. Gerez, University of Twente

CROSSOVER IN TREES

�

a b 3 d

a� b� 3d

�

a e c 2

ae� c� 2

�

a b d

a� b� aed

�

a e

3

c 2

c� 5Parent 1

Parent 2

Child 1

Child 2

NEURAL NETWORKS

GENETIC PROGRAMMING

4

February 24, 2000Sabih H. Gerez, University of Twente

PERMUTATION
Permutation is somewhat comparable to inversion in GAs. It inter-
changes subtrees within the same tree.

�

a b 3 d

a� b� 3dBefore:

�

a b

3

d

3� (a� b)d
After:

NEURAL NETWORKS

GENETIC PROGRAMMING

5

February 24, 2000Sabih H. Gerez, University of Twente

MUTATION
Mutation randomly changes a terminal or nonterminal node in the tree.

�

a b 3 d

a� b� 3dBefore:

�

a b 3 d

After:

�

ab� 3d

a b

Before:
a� b

b b

After:
2b

NEURAL NETWORKS

GENETIC PROGRAMMING

6

February 24, 2000Sabih H. Gerez, University of Twente

THE LISP LANGUAGE (1)
* One of the oldest programming languages, invented by John

McCarthy in the late fifties. It has been adapted throughout the years
and is still especially popular in artificial intelligence.

* LISP was chosen by Koza for his first GP experiments. It has some
convenient features that make it attractive for GP. Many modern GP
implementations no longer use LISP (but e.g. C++).

* LISP = LISt Processing. Lists are the main data structure. List ele-
ments can be atoms (atomic symbols) or other lists. Examples:
+ (A B C)

+ (A (B C) (D (E (F))))

NEURAL NETWORKS

GENETIC PROGRAMMING

7

February 24, 2000Sabih H. Gerez, University of Twente

THE LISP LANGUAGE (2)
* A LISP program is itself a list. Functions are expressed using a prefix

notation, where the function name corresponds to the first element
in the list. Examples:
+ (+ B C) corresponds to B� C.
+ (* B (+ E (* A C))) corresponds to B(E� AC).

* As lists are the most important data structure, LISP has many built-in
functions for the manipulation of lists. If the individuals for GP are
represented as lists in LISP, their manipulation with crossover, muta-
tion, etc. become easy to implement.

* The evaluation of an individual is also easy. One simply supplies the
list representing the program to the function eval . Assume that B
and C are inputs with values 2 and 5; then:

(eval ’(+ B C)) � 7.

NEURAL NETWORKS

GENETIC PROGRAMMING

8

February 24, 2000Sabih H. Gerez, University of Twente

THE EVOLUTION ALGORITHM
* In GP the same evolutionary principles are used as in GAs.
* There is a population of individual programs. The initial population

is often chosen randomly.
* The fitness is often normalized and used in a selection mechanism.
* Various selection mechanisms (roulette wheel, tournament, etc.)

are used. Sometimes, when working with large population sizes
(larger than 1000), overselection is used: the selection is more than
proportional to fitness.

* Various replacement schemes are used.

NEURAL NETWORKS

GENETIC PROGRAMMING

9

February 24, 2000Sabih H. Gerez, University of Twente

THE GP INSTANCE
An instance of the GP problem is defined by:
* A problem-dependent set of functions that can be used as nontermi-

nal nodes. Example: ��,�,�,�, sin, cos�.

* A problem-dependent set of terminal nodes. This set should contain
all input variables of the problem and constants. Constants can be
specified by an interval from which a random choice is made when
individuals for the initial population are selected.

* A data set of typical inputs (or a set of all possible inputs).
* A function that computes fitness based on a program’s performance

for the input data set.

NEURAL NETWORKS

GENETIC PROGRAMMING

10

February 24, 2000Sabih H. Gerez, University of Twente

THE CLOSURE PROBLEM
* In order to make it possible to freely interchange nodes in the tree,

all functions datatypes in the program should be the same, e.g. inte-
gers.

* This requires a careful design of the function set as well as a conver-
sion of inputs to the chosen datatype.

* It is undesirable that program evaluation halts due to exceptions
such as “divide by zero”: the divide function to be provided should
check for a zero divider and return an appropriate numeric value.

NEURAL NETWORKS

GENETIC PROGRAMMING

11

February 24, 2000Sabih H. Gerez, University of Twente

CONDITIONAL CONSTRUCTS
* The trees shown until now represented simple combinational func-

tions.
* Sometimes it is useful to be able to have conditional computations.

This could be achieved by a three-argument function if , the first ar-
gument being the condition, the second the then branch and the
third the else branch. Example:

(if (> a 0) (– b c) (– c b))

* Note: supposing that the program uses the integer datatype, one
has to agree that Booleans are also encoded as integers.

NEURAL NETWORKS

GENETIC PROGRAMMING

12

February 24, 2000Sabih H. Gerez, University of Twente

EXAMPLE: SYMBOLIC REGRESSION
* Problem description: one knows that some set of input-output pairs

have been generated by a mathematical function, e.g. a polynomial
of unknown order; try to find this function.

* Problem instance reported by Koza [1] concerns the function
x4

� x3
� x2

� x in the interval [�1, 1], characterized by 20 data
points in this interval. A GP run was set up with X as the only terminal
nodes and a function set consisting of “protected” versions of +, –,
* , / , SIN , COS, EXP, and LOG (protected means that division by zero,
the logarithm of a negative number, etc. do not cause exceptions).

* In an experiment with a population size of 500 the following correct
solution was found at generation 34:

(+ X (* (+ X (* (* (+ X (– (COS (– X X)) (– X X)))
X) X)) X)).

NEURAL NETWORKS

GENETIC PROGRAMMING

13

February 24, 2000Sabih H. Gerez, University of Twente

EXAMPLE: PAC-MAN (1)
* Problem description: perform one move in the well-known game of

Pac-Man, a computer game where the “Pac-Man’’ can walk through
a two-dimensional maze; it should eat as many food items deposited
in the maze while avoiding to be eaten by “monsters”.

* The program to be evolved is called repetitively until it either eats all
the food or it is eaten by a monster. The score collected until the end
is a measure for the fitness.

* In a straightforward approach, the complete state of the maze would
be an input to the program and the program would have to figure out
how to compute distances, estimate danger, etc. This becomes too
complex.

NEURAL NETWORKS

GENETIC PROGRAMMING

14

February 24, 2000Sabih H. Gerez, University of Twente

EXAMPLE: PAC-MAN (2)
* Instead, the problem was solved by special-purpose functions and

terminals.
+ Function example: if-less-than-or-equal , a four-argu-

ment function that compares its first and second arguments and
then either evaluates its third or its fourth argument.

+ Terminal example: distance-to-food , an input variable that
is updated after each move.

+ Other terminal example: advance-to-food ; the evaluation of
this input variable causes the Pac-Man to move towards the food;
its numeric value is less relevant.

NEURAL NETWORKS

GENETIC PROGRAMMING

15

February 24, 2000Sabih H. Gerez, University of Twente

ANALYSIS (1)
* The GP technique is a heuristic technique: no guarantee exists that

a solution will be found after some number of generations. In addi-
tion, the method is probabilistic and dependent on the initial popula-
tion.

* An interesting question is: what is more efficient, to have a few runs
with many generations or many runs with few generations?

* Call Y(Gp, i) the probability that a run with population size Gp finds
the required solution for the first time after i generations.

* The cumulative probability that a solution is found between genera-
tion 0 and i in a run with population size Gp is given by P(Gp, i):

P(Gp, i) � �
i

k�1

Y(Gp, k).

NEURAL NETWORKS

GENETIC PROGRAMMING

16

February 24, 2000Sabih H. Gerez, University of Twente

ANALYSIS (2)
* The probability z of finding a solution after r runs of at most i genera-

tions is:

z� 1� �1� P(Gp, i)�
r
.

* One can experimentally determine the number of evaluations need-
ed to achieve a fixed value for z, say z� 0.99. It turns out that there
is a minimum somewhere in the middle of the ranges that r and i can
assume.

* For low i, P(Gp, i) is low and a high r is required resulting in a high
number of evaluations. For high i, P(Gp, i) starts growing very slowly
which also means that many evaluations are needed.

NEURAL NETWORKS

GENETIC PROGRAMMING

17

February 24, 2000Sabih H. Gerez, University of Twente

AUTOMATICALLY DEFINED FUNCTIONS
* Any nontrivial computer program has hierarchy and consists of sub-

routines that are (often) called multiple times.
* GP can take advantage of subroutines. Suppose that some subtree

that solves part of the problem would be useful another part of the
problem as well, the effort to discover the subtree once more can be
saved if there is a mechanism to treat the useful subtree as a subrou-
tine.

* Such subroutines that are subject to evolution themselves are called
automatically defined functions (ADFs) in the context of GP.

NEURAL NETWORKS

GENETIC PROGRAMMING

18

February 24, 2000Sabih H. Gerez, University of Twente

ADF REPRESENTATION
* Consider the LISP function definition mechanism consisting of the

function name defun , a function name, an argument list and a func-
tion body. Example:

(defun dist (a b) (+ (* a a) (* b b)))

* Another useful LISP function is progn : it has an arbitrary number of
arguments and evaluates its arguments sequentially.

* Then, individuals for GP with ADFs look like:
(progn (defun ADF0 <argument list> <function body>)

<main body>)

* ADF0 should be part of the function set that can be called from the
main body.

* The top-level structure of individuals are protected such that genetic
operators only manipulate the function and main bodies.

NEURAL NETWORKS

GENETIC PROGRAMMING

19

February 24, 2000Sabih H. Gerez, University of Twente

MORE ADVANCED TOPICS
* When using ADFs, the user should indicate how many ADFs to use

and how many arguments each ADF should have. One says that the
GP has a fixed architecture.

* It is also possible to let GP itself determine its architecture. Then ge-
netic operations should be defined that modify the architecture of in-
dividuals. These are called architecture altering operations.

* All programs considered for GP discussed so far did not have any
internal memory. In a way similar as the extensions for ADFs, one
can think of memories that become part of the architecture, and
functions that can read and write that become part of the function
set.

* Loops are also a control structure that can be incorporated in GP.

NEURAL NETWORKS

GENETIC PROGRAMMING

20

February 24, 2000Sabih H. Gerez, University of Twente

HARDWARE EVOLUTION
* GP deals with the automatic invention of software programs includ-

ing software that create hardware and can e.g. be simulated by
SPICE. The result of the simulation is a measure for the fitness.

* Nowadays, field-programmable gate arrays (FPGAs) with large
complexity are becoming available. They consists of large numbers
of simple electrical gates (look-up tables for constructing combina-
tional logic such as AND and OR gates, flipflops and memories). The
interconnection between the gates is controlled by a very long bit
string that is downloaded on the FPGA.

* Configuring FPGAs and let them run becomes an interesting alter-
native for fitness evaluation.

* A completely different aspect of hardware evolution is embryonics
that aims at simulating cellular growth in hardware (e.g. FPGAs).

NEURAL NETWORKS

GENETIC PROGRAMMING

21

February 24, 2000Sabih H. Gerez, University of Twente

FURTHER READING (1)
John Koza is the leading researcher in genetic programming. He has
(co)authored three voluminous books on the topic. [1] explains the ba-
sics, [2] is mainly dedicated to “automatically defined functions” and [3]
deals with “architecture altering operations” and has extensive atten-
tion for the “automated synthesis of analog electrical circuits”.

[1] Koza, J.R., Genetic Programming, On the Programming of Computers by Means of Natural
Selection, MIT Press, Cambridge, Massachusetts, (1992).

[2] Koza, J.R., Genetic Programming II, Automatic Discovery of Reusable Programs, MIT
Press, Cambridge, Massachusetts, (1998).

[3] Koza, J.R., F.H. Bennett III, D. Andre and M.A. Keane, Genetic Programming III, Darwinian
Invention and Problem Solving, Morgan Kaufmann, San Francisco, California, (1999).

NEURAL NETWORKS

GENETIC PROGRAMMING

22

February 24, 2000Sabih H. Gerez, University of Twente

FURTHER READING (2)
* Different aspects of hardware evolution including embryonics are

discussed in [4].
* Results of research on using digital (!) FPGA technology for design-

ing analog (!) circuits are presented in [5].

[4] Mange, D. and M. Tomassini (Eds.), Bio–Inspired Computing Machines, Towards Novel
Computational Architectures, Presses Polytechniques et Universitaires Romandes, Lau-
sanne, (1998).

[5] Thompson, A., Hardware Evolution, Automatic Design of Electronic Circuits in Reconfigur-
able Hardware by Artificial Evolution, Springer, London, (1998).

