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GENETIC ALGORITHMS (GAs)
Principles:
* Based on analogy with evolution process in nature.
* Works with a population of feasible solutions, instead of a single fea-

sible solution.
* Each feasible solution is encoded in a linear data structure, usually

a bit string, called a chromosome.
* Two parent chromosomes are combined by crossover to form one/

two child chromosomes.
* Optimization based on ‘‘survival of the fittest’’: prefer parents with

better costs for mating.
* Derivative-free optimization: it can be used both for continuous and

discrete optimization. Example application: use GAs to find the
weights in a neural network.
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GENETIC ALGORITHMS: ILLUSTRATION

First parent

Second parent

0 1 0 1 1 0 0 1

1 0 0 0 0 1 1 0

First child

Second child

0 1 0 1 1

0 0 11 0 0 0 0

1 1 0
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GENETIC ALGORITHMS: CODE
genetic()

f

pop ;;
for (i 1; i � pop size; i i+ 1)

pop pop [ f“chromosome of random feasible solution”g;
do f

newpop ;;
for (i 1; i � pop size; i i+ 1) f

parent1 select(pop);
parent2 select(pop);
child crossover(parent1, parent2);
newpop newpop[ fchildg;

g

pop newpop;

g while (!stop());
“report best solution”;

g
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SITUATION IN NATURE
* All genetic information is encoded in chromosomes. The total genet-

ic information is called the genotype.
* After a complex chemical process, the genetic information comes

into expression in a living being called the phenotype.
* A chromosome consists of two long strings of DNA.
* Each string in a chromosome consists of gene sequences.
* Only one of the pairs of genes comes into expression in the pheno-

type.
* Sexual reproduction involves separation of the DNA string pairs.
* Effects like crossover, inversion and mutation contribute to the cre-

ation of new genetic material.
Conclusion: GAs do not closely follow the natural process.
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DARWINIAN AND LAMARCKIAN
EVOLUTION

* A principle of Darwinian is that the genotype controls the phenotype
but that the reverse is never true.

* Evolution in which the phenotype affects the genotype is called La-
marckian.

* In the context of GAs, Lamarckian evolution means that individuals
are e.g. “repaired” before becoming part of the new population. This
can be done with the goal of:
+ putting solutions whose encodings do not represent a feasible

solution back into the set of feasible solutions;
+ applying a local optimization on an individual.
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IMPORTANT ISSUES
* Fitness calculation: different ways to calculate the fitness may affect

the performance of the algorithm.
* Chromosome representation: binary strings, numbers, or other ap-

plication-dependent data structures.
* Selection mechanism: parents for the new generation can be se-

lected in different ways.
* Child creation:

+ by means of various crossover operators;
+ by means of mutation, a random modification of part of a chromo-

some.
+ by means of “copying without modification”.

* Replacement scheme: the way a population maintains a constant
size.
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FITNESS
* The goal of optimization may be either maximization or minimization

of a cost function.
* However, GA always maximizes fitness, which should be a positive

value due to the way that fitness is used during selection.
* Minimization problems can, therefore, not simply be transformed to

maximization problems by multiplication by �1.
* So, it is necessary to assign a suitable fitness value to each feasible

solution such that a higher fitness value indicates a higher desirabil-
ity of the associated solution.
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FITNESS FUNCTIONS (1)
Recall optimization functions. An instance I � (F, c), where:
* F is the set of feasible solutions, and
* c is a cost  function, assigning a cost value to each feasible solution;

c : F � R
Consider a minimization problem:
* A possible choice for the fitness function h(i) of some feasible solu-

tion si encoded by chromosome i (1 � i � Np, Np being the popula-
tion size) is:

h(i) �
	

	

�

�

�

Cmax� c(si),  if c(si) � Cmax

0,  otherwise

* The constant Cmax can be fixed, dependent on the problem instance
or dependent on the actual costs in the current generation.
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FITNESS FUNCTIONS (2)
* If the goal is maximizing a cost function, but the cost may become

negative, a possible choice for the fitness function h is:

h(i) �
�

�

�

�

�

c(si) � Cmin,  if c(si) � Cmin � 0

0,  otherwise

* Fitness scaling is applied to adjust the range of fitness values during
the search in order to avoid that individuals with extreme low or high
fitness values have too much influence on the search. Examples
are:
+ Linear scaling: h�(i) � ah(i) � b.
+ Ranking: sort the individuals in the population according to their

fitness values and assign new fitness values e.g. starting with 1
for the worst, 2 for the next, etc.
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SELECTION MECHANISMS (1)
* Consider the normalized fit-

ness f (i) derived from the fit-
ness h(i):

f (i) �
h(i)

�

Np

k�1

h(k)

* The normalized fitness can be
used as a probability for the
selection of an individual for
participation in the next gener-
ation. This is called roulette-
wheel selection. It is one of the

most popular selection mecha-
nisms.

* Roulette-wheel selection can-
not guarantee a proportional
representation in the next gen-
eration.

f (1)

f (2)

f (Np)

���
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SELECTION MECHANISMS (2)
* In tournament selection, a sub-

set of m individuals is uniformly
drawn from the population and
the one with the best fitness
from this subset is selected.
This mechanism will lead to a
more than proportional repre-
sentation of the individuals with
better fitness.

* In stochastic universal sam-
pling all individuals that need to
be selected are selected at the
same time by sampling the rou-

lette wheel with equidistant
pointers. This will lead to a rep-
resentation of individuals pro-
portional to their fitness. Exam-
ple with 8 pointers:

f (1)

f (2)

f (Np)

���
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CROSSOVER OPERATORS (1)

* One-point crossover: cut the
chromosomes at one position
and combine. A disadvantage
is that patterns at the left and
rightmost ends of a chromo-
some are never kept together.

* Two-point crossover: cut the
chromosomes at two positions
and exchange.
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CROSSOVER OPERATORS (2)
* Uniform crossover: generate a random bit string and copy from one

parent or the other depending on bit value.

0 01 11 0

* Problem-specific crossover operators may also be very useful. An
example for TSP follows later.
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REPLACEMENT SCHEME
* One can either construct an entire new generation of the population

in each iteration or have a steady-state population to and from which
individuals are continually added and removed.

* In the latter case, one needs to have a selection mechanism for dis-
carding individuals, e.g. based on 1�  ‘normalized fitness’. One can
also consider the union of the old population and the set of new indi-
viduals and use fitness-based selection to obtain a new population
of size Np.

* In both cases, one can opt for an “elitist strategy”, in which special
measures are taken to make sure that the best solution is never dis-
carded.
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APPLICATION TO TSP (1)
* Given is a set of cities �c1, ��� , cN

� and the pairwise distances between
the cities. Find the shortest tour that visits all cities exactly once.

* Encoding: as opposed to many GA algorithms where the chromo-
some contains slots for subsequent parameter values that can be
chosen independently, it is convenient here just to encode the se-
quence of cities in a tour. Example for N � 8:

c1 | c4 | c5 | c2 | c3 | c7 | c8 | c6

* Note that the crossover operators discussed earlier would not work
on this encoding: they would produce illegal solutions.
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APPLICATION TO TSP (2)
* A suitable crossover operator for the encoding chosen is order

crossover (it is useful in many other combinatorial optimization prob-
lems that look for an optimal ordering). It uses a single cut point, cop-
ies the code from the first parent until the cut point into the child and
then adds the missing cities using the order in which they appear in
the second parent. Example:

First parent: c1 | c4 | c5 | c2 | c3 | c7 | c8 | c6

Second parent: c5 | c8 | c1 | c2 | c6 | c7 | c4 | c3

Child using cut point after second city: c1 | c4 | c5 | c8 | c2 | c6 | c7 | c3

* Many other crossover operators can be thought of that preserve cor-
rectness in chromosomes that encode permutations.
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APPLICATION TO TSP (3)
* The approach just described is a non-Lamarckian GA for TSP.
* In practice, the most successful GAs for TSP are Lamarckian: solu-

tions are optimized according to some locally optimal criterion be-
fore being added to the population.

* For a fixed computation time, special-purpose heuristics give the
best solutions. If one is prepared to invest more time, better solutions
are found by combinations of GAs (or simulated annealing) and spe-
cial-purpose heuristics [3].

* Algorithms that combine general-purpose and special-purpose
techniques are called hybrid algorithms.
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SCHEMATA
* Consider an application with bit-string encodings.
* A pattern in a bit string is called a schema (plural: schemata). One

can also say that schemata specify subspaces of the Boolean space
containing all bit strings of a given length.

* Example bit string:
1 0 1 1 0 1 0 0 .

* Schemata in this string are (a * indicates a don’t care):
* 0 1 * * * * *

1 * * 1 0 * 0 *

* One can assume that schemata have a fitness themselves: the sub-
spaces they indicate may or may not be interesting for the search.
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SCHEMA THEOREM (1)
* The normalized fitness of a schema S is given by f (S): it is the aver-

age fitness of all individuals carrying schema S.
* Let m(S, t) denote the number of individuals carrying schema S in a

population present at time t.
* Then, assuming a selection mechanism proportional to fitness

(where fave is the average fitness in the population):

m(S, t � 1) � m(S, t)Np
f (S)

�

Np

i�1

f (i)

� m(S, t)
f (S)
fave

* Suppose that the fitness of schema S is slightly better (or worse) than
average:

f (S) � (1� c)fave
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SCHEMA THEOREM (2)
* Then:

m(S, t � 1) � m(S, t)(1� c) � m(S, 0)(1� c)t�1.
* This means that the presence of a schema with a fitness above (be-

low) average, will grow (decrease) exponentially in the population.
* A similar result holds if the effects of crossover and mutation is taken

into effect. The conclusion is then that the non-don’t-care bits of
schemata should be closely grouped to have a higher chance to sur-
vive.
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DISCUSSION
* GAs are a powerful optimization technique. However, one needs ex-

tensive experimentation before finding the right “settings of the but-
tons”: Which chromosome encoding should be used? Which cross-
over operator? Which replacement scheme? How large should the
population size be chosen? etc.

* Many more variations exist, for example:
+ Parallel implementations that evolve independently but in which

individuals from time to time migrate;
+ Implementations for which the fitness computation is expensive

due to many test cases that have to be evaluated; a solution is co-
evolve parasites, sets of difficult test cases (see book).
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FURTHER READING
* A “classic” textbook on GAs is [1].
* A GA book that discusses many applications in electrical engineer-

ing is [2].
* The state-of-the-art for TSP solution techniques including genetic

algorithms, neural-net approaches, etc. can be found in [3].
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