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PROBABILITY THEORY
Consider P(A,B) the joint probability of two events A and B:
* When the events are independent: P(A,B) � P(A)P(B)
* Otherwise, conditional probabilities should be used (P(A | B) means

the probability of A given the occurrence of B):
+ P(A,B) � P(A | B)P(B)
+ P(A,B) � P(B | A)P(A)

* From these, Bayes’ Rule follows: P(A | B) �
P(B | A)P(A)

P(B)
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MAXIMUM LIKELIHOOD CLASSIFICATION
* Suppose that there is a (model of a) physical process that produces

some outcome M.
* One measures some data D related to the outcome.
* One wants to know which outcome has produced D.
* The maximum likelihood principle states: max

M
P(M | D).

* With the application of Bayes’ Rule: max
M

P(D | M)P(M)
P(D)
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PROBABILITY DISTRIBUTIONS
Basics:

* The set of all possible outcomes of an experiment is the sample
space.

* A random variable X is a function from the sample space to the real
numbers.

* X may be discrete or continuous.
* Distribution function of a random variable: �(x) � P(X � x)

* Density function: p(x) �
d�(x)

dx
.

Well-known distributions:

* binomial, Poisson
* Gaussian
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MEAN AND VARIANCE
* Discrete case:

+ Expected value or mean: E[X] � m��

i

xiP(xi)

+ Variance: �2
� E[(X� m)2] ��

i

(xi � m)2P(xi)

* Continuous case:

+ Expected value or mean: E[X] � m� �

�

��

p(x)dx

+ Variance: �2
� E[(X� m)2] � �

�

��

(x� m)2p(x)dx
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MEAN AND VARIANCE ESTIMATION
* Suppose that n measurements have been made: x1, ��� , xn.

* The estimated mean is then: m�

1
n�

i

xi

* And the estimated variance: �2
�

1
n�

i

(xi � m)2
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INFORMATION THEORY
* Deals with issues like efficiency and redundancy in encoding.

* Consider e.g. the retina: it has 108 cells, but there are only 106 cells
in the optic nerve. Hence some kind of data compression takes place
to be more efficient in the transport of information.

* Redundancy is necessary to recover the information in received
messages in the presence of noise.
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CHANNEL CAPACITY AND ENTROPY
* Channel capacity for a channel with m locations with n symbols per

location: Cm � mlog2 n.

* Suppose that a source can generate N different messages x1, ��� , xN.
The lower the probability for the occurrence of some message, the
higher its information content. If the probability of xi is pi,

(1 � i � N), then: I i � log2
1
pi

.

* The entropy H is the expected value of the information content:

H ��

N

i�1

pi log2
1
pi

� ��

N

i�1

pi log2 pi.

* Requirements for channel: Cm � H.
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MAXIMAL ENTROPY

* Entropy: H ��

N

i�1

pi log2
1
pi

� ��

N

i�1

pi log2 pi

* It can be shown that 0 � H � log2 N.

* The lower bound is reached when one of the messages has proba-
bility one and the rest probability zero.

* The upper bound is reached when all messages are equally prob-

able: pi �
1
N

.
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REVERSIBLE  CODES
* The theory can be used for the design of reversible codes, codes

from which the original messages can be exactly recovered.
* Suppose that the messages xi (1 � i � N) have a length l i. The av-

erage message length is then: �
N

i�1

pil i.

* It holds: �
N

i�1

pil i � H � ��

N

i�1

pi logpi.

* The optimum situation (equality) occurs when: l i � � logpi.
* An example of a reversible code is Huffman coding.
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IRREVERSIBLE  CODES
* In many biological systems

codes do not need to be revers-
ible. Irreversible codes are
more efficient.

* The use of prototypes, also
called vector quantization,
leads to irreversible codes.
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IRIS RECOGNITION EXAMPLE (1)
* Based on the work of Daugman

[1].
* Image-processing techniques

localize the iris in the image and
apply 2-D Gabor transforms on
the iris at different scales.

* The most significant bits of the
coefficients obtained are col-
lected into a 256 byte (2048 bit)
code, the feature vector. These
vectors are the prototypes.

[1] Daugman, J.G., High Confidence Visual Recognition of Persons by a Test of Statistical In-
dependence, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.15(11),
pp.1148–1161, (November 1993).
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IRIS RECOGNITION EXAMPLE (2)
* Question: how much informa-

tion do these 256 bytes of the
feature vector contain?

* Tests reveal that, for each bit
position, the average bit value
is close to 0.5.

* Consider the normalized Ham-
ming distance (HD) of two bit
strings a1, ��� , aB and b1, ��� , bB
with the same length B:

 HD �

1
B
�

B

i�1

ai � bi

* One expects a binomial dis-
tribution for the HDs (the proba-
bility of a 1 is p, the probability
of a 0 is q � 1� p, the fraction
of bits equal to 1 is x �

n
B

):

 p(x) � B!
n!(B� n)!

pnq(B�n)

* A binomial distribution has a
variance of:

�
2
�

pq
B
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IRIS RECOGNITION EXAMPLE (3)

* Computing the HDs for
the “imposters”, the fea-
ture vectors originating
from different persons
gives the next distribu-
tion.
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IRIS RECOGNITION EXAMPLE (4)
* From the distribution it can be derived that B � 173.
* So, the feature vector is highly redundant.
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STATISTICAL DETECTION THEORY (1)
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STATISTICAL DETECTION THEORY (2)
* Four outcomes:

+ Acceptance of authentic
+ Acceptance of imposter

(false acceptance)
+ Rejection of authentic (false

rejection)
+ Rejection of imposter

* The choice of decision criterion
affects the probabilities of each
outcome, from very conserva-
tive to very liberal.

* This is visualized in a receiver

operating characteristic (ROC
curve).
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IRIS RECOGNITION EXAMPLE (5)

* It turns out that the two distribu-
tions are fully disjoint:

* This high level of reliability is a
consequence of the long fea-
ture vector.

* The imposters curve is cen-
tered around 0.45 rather than
0.5 because of a “best of k”
strategy to compensate for
rotations.
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MINIMUM DESCRIPTION LENGTH (1)
* When the goal is to learn a message D, one can store the message

as such or one can try to find a compression method M for a more
efficient storage.

* The most efficient situation corresponds to a minimal description of
the method itself and compressed data.

 L(M,D) � L(M) � L(D encoded usingM)

* Suppose that the possible models have a probability distribution.
Then there is also a probability distribution of the models given the
data and Bayes’ Rule can be used:

 P(M | D) �
P(D | M)P(M)

P(D)

* The goal is to maximize P(M | D) or to determine  max
M

P(D | M)P(M).
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MINIMUM DESCRIPTION LENGTH (2)
* To maximize a quantity also means to maximize its logarithm:

arg max
M

P(D | M)P(M) � arg max
M

[logP(D | M) � logP(M)]

* or to minimize its negative:

arg min
M

[
� logP(D | M)� logP(M)]

* As the minimum length for a message that has a probability P is
� logP, it follows that choosing the best model according to Bayes’
Rule amounts to applying the minimum description length (MDL)
principle.
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RESIDUALS (1)
* Suppose that a model M has been chosen. It maps data points xi

(1 � i � N) to prototypes mi. The differences are called  residuals.
Suppose that the sum of the residuals has a Gaussian distribution
with variance �:

P(D | M) ��

�

�

1
2��

�

�

�

N
2
e
�

1
2�
�

N

i�1

(xi�mi)
2

* Consider now that the model is a neural network parameterized by
the weights  wi (1 � i � W). This gives a distribution of all neural
networks, supposed to be Gaussian with variance �:

P(M) ��

�

�

�

1
2��

�

�

�

�

W
2

e
�

1
2�
�

W

i�1

w2
i
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RESIDUALS (2)
* The application of the MDL principle gives:

arg min
M

[
� logP(D | M)� logP(M)] � 1

2�
�

N

i�1

(xi � mi)
2
�

1
2�
�

W

i�1

w2
i � const.

 
* This explains why neural network training aims at minimizing the

squared sum between actual and desired outputs for the training
data (the error).

* Note that there is a trade-off between minimizing the error and the
cost of the model.
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IMAGE CODING EXAMPLE (1)
* One decides to encode an n� n image with pixels I ij  (1 � i, j � n)

with m neurons and reconstruct it as follows:

r1

r2

rm

Image
Iij

Reconstructed
Image

I'ij
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IMAGE CODING EXAMPLE (2)

* The pixels in the reconstructed image: I�ij � �

m

k�1

wijkrk.

* According to the MDL principle, the wijk and rk should be chosen
such as to minimize:

�

n

i�1

�

n

j�1

(I ij � I�ij)
2
��

n

i�1

�

n

j�1

�

m

k�1

w2
ijk �

�

m

k�1

r2
k


