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PROBABILITY THEORY

Consider P(A, B) the joint probability of two events A and B:

* When the events are independent: P(A, B) = P(A)P(B)

* Otherwise, conditional probabilities should be used (P(A | B) means
the probability of A given the occurrence of B):
+ P(A,B) = P(A|B)P(B)
+ P(A,B) = P(B|A)P(A)

P(B [AP(A)

* From these, Bayes’ Rule follows: P(A|B) = @)
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MAXIMUM LIKELIHOOD CLASSIFICATION

* Suppose that there is a (model of a) physical process that produces
some outcome M.

* One measures some data D related to the outcome.

* One wants to know which outcome has produced D.

* The maximum likelihood principle states: maxP(M | D).
M

P(D [ M)P(M)

* With the application of Bayes’ Rule: max
M P(D)
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PROBABILITY DISTRIBUTIONS

Basics:

* The set of all possible outcomes of an experiment is the sample
space.

* A random variable Xis a function from the sample space to the real
numbers.

*  X'may be discrete or continuous.
* Distribution function of a random variable: @(xX) = P(X < x)
do(x)

dx -’

* Density function: p(x) =

Well-known distributions:
* binomial, Poisson
* Gaussian
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MEAN AND VARIANCE

* Discrete case:
+ Expected value or mean: E[X] = m = " xP(x)

+ Variance: 02 = E[(X — m)?} = Z(Xi — m)2P(x;)

i
* Continuous case:

+ Expected value or mean: E[X] = m = I p(x)dx

©

+ Variance: 02 = E[(X — m)?3 = j(x — m)?p(x)dx

—
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MEAN AND VARIANCE ESTIMATION

* Suppose that n measurements have been made: x, ..., Xn.

* The estimated mean is then: m = %ZXi

* And the estimated variance: 0% = %Z(xi — m)?
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INFORMATION THEORY

* Deals with issues like efficiency and redundancy in encoding.

* Consider e.g. the retina: it has 108 cells, but there are only 10° cells
inthe optic nerve. Hence some kind of data compression takes place
to be more efficient in the transport of information.

* Redundancy is necessary to recover the information in received
messages in the presence of noise.

December 16, 1999

r‘ NEURAL NETWORKS A 7
FITNESS

CHANNEL CAPACITY AND ENTROPY

* Channel capacity for a channel with mlocations with n symbols per
location: Cy, = mlog, n.

* Suppose that a source can generate N different messages X, ..., Xy.
The lower the probability for the occurrence of some message, the
higher its information content. If the probability of x; is p,

(1=i=N),then: I = Iogzé.
I

* The entropy H is the expected value of the information content:

N N
H= Zpi Iogzp% = - Zpi log,, p;.
i=1 i=1

* Requirements for channel: C, = H.
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MAXIMAL ENTROPY

N N
* g = 1_
Entropy: H = zl p; |092ﬁi = - _lei log, p;
1= =
* It can be shown that 0 < H < log, N.
* The lower bound is reached when one of the messages has proba-
bility one and the rest probability zero.
* The upper bound is reached when all messages are equally prob-

able: p; = %

December 16, 1999




‘ NEURAL NETWORKS A 9

J FITNESS

REVERSIBLE CODES

* The theory can be used for the design of reversible codes, codes
from which the original messages can be exactly recovered.

* Suppose that the messages x; (1 = i < N) have alength |,. The av-
N

erage message length is then: Z pil;-
i=1

N N
* ltholds: > pl; = H=— > plogp,.
i=1 i=1

* The optimum situation (equality) occurs when: |; = — logp;.
*  An example of a reversible code is Huffman coding.
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IRREVERSIBLE CODES

* In many biological systems
codes do not need to be revers-
ible. Irreversible codes are
more efficient.

* The use of prototypes, also

called vector quantization,
leads to irreversible codes.

(@)
o
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S
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IRIS RECOGNITION EXAMPLE (1)

* Based on the work of Daugman
[1].

* Image-processing techniques
localize the irisinthe image and
apply 2-D Gabor transforms on
the iris at different scales.

* The most significant bits of the
coefficients obtained are col-
lected into a 256 byte (2048 bit)
code, the feature vector. These
vectors are the prototypes.

[1] Daugman, J.G., High Confidence Visual Recognition of Persons by a Test of Statistical In-
dependence, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.15(11),

pp.1148-1161, (November 1993).
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IRIS RECOGNITION EXAMPLE (2)

* Question: how much informa-
tion do these 256 bytes of the
feature vector contain?

* Tests reveal that, for each bit
position, the average bit value
is close to 0.5.

* Consider the normalized Ham-
ming distance (HD) of two bit
strings a,,...,ag and by,...,bg
with the same length B:

B
1
= EZ ai @ bi
i=1

* One expects a binomial dis-
tribution for the HDs (the proba-
bility of a 1 is p, the probability
ofaOisq = 1 — p, the fraction

of bits equal to 1 is x = %):
p(x) = mp qB="

* A binomial distribution has a
variance of:

5 = 28

o]
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IRIS RECOGNITION EXAMPLE (3)

Hamming Distances for imposters

* Computing the HDs for
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IRIS RECOGNITION EXAMPLE (4)

* From the distribution it can be derived that B = 173
* So, the feature vector is highly redundant.
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STATISTICAL DETECTION THEORY (1)

Authentics Imposters

Probability density

0.0 0.1 0.2 0.3 04}05 0.6 0.7 0.8 0.9 1.0

. . —
¥ Hamming distance
criterion
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STATISTICAL DETECTION THEORY (2)

* Four outcomes: operating characteristic (ROC
+ Acceptance of authentic curve).
+ Acceptance of imposter Liberal region

(false acceptance)

+ Rejection of authentic (false
rejection)

+ Rejection of imposter

* The choice of decision criterion
affects the probabilities of each
outcome, from very conserva-
tive to very liberal.

* This is visualized in a receiver Imposter acceptance rate

1.0 l

onservative
region

0.0
0.0 0.5 1.0

Authentic acceptance rate
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IRIS RECOGNITION EXAMPLE (5)

* |tturns out that the two distribu- * This high level of reliability is a
tions are fully disjoint: consequence of the long fea-
ture vector.

Hamming Distances for Authentics and imposters
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MINIMUM DESCRIPTION LENGTH (1)

* When the goal is to learn a message D, one can store the message
as such or one can try to find a compression method M for a more
efficient storage.

* The most efficient situation corresponds to a minimal description of
the method itself and compressed data.

L(M,D) = L(M) + L(D encoded usiniyl)
* Suppose that the possible models have a probability distribution.

Then there is also a probability distribution of the models given the
data and Bayes’ Rule can be used:

P(D | M)P(M)
P(D)
* The goal is to maximize P(M | D) or to determine maxP(D | M)P(M).
M

P(M|D) =

December 16, 1999
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MINIMUM DESCRIPTION LENGTH (2)

* To maximize a quantity also means to maximize its logarithm:
argmaxP(D | M)P(M) = arg maxlogP(D | M) + logP(M)]
M M

* or to minimize its negative:
arg mirl — logP(D | M) — log P(M)]
M

* As the minimum length for a message that has a probability P is
— logP, it follows that choosing the best model according to Bayes’
Rule amounts to applying the minimum description length (MDL)
principle.
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RESIDUALS (1)

* Suppose that a model M has been chosen. It maps data points x;
(1 =i = N)to prototypes m;. The differences are called residuals.
Suppose that the sum of the residuals has a Gaussian distribution
with variance a:

N
5L S —my)2
P(D M) = [ﬁre 2

* Consider now that the model is a neural network parameterized by
the weights w; (1 < i < W). This gives a distribution of all neural
networks, supposed to be Gaussian with variance g:

wzw

P(M) = e

Zﬂﬂ
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RESIDUALS (2)

* The application of the MDL principle gives:

argmir — logP(D | M) — logP(M)] = 5 Z(x - m)? + —Zw + const.
M

* This explains why neural network training aims at minimizing the
squared sum between actual and desired outputs for the training
data (the error).

* Note that there is a trade-off between minimizing the error and the
cost of the model.
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IMAGE CODING EXAMPLE (1)

* One decides to encode an n x nimage with pixels I; (1 < i,j <

with m neurons and reconstruct it as follows:

econstructed
Image
'

n)
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IMAGE CODING EXAMPLE (2)

* The pixels in the reconstructed image: I'; = Z Wil

* According to the MDL principle, the wy, and r, should be chosen

such as to minimize:
n n m

z Z(Ilj I’”)2 + z Z ZWuk + z r
k=1

i=1j=1 i=1lj=1k=1
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