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DYNAMICS
* Dynamical systems can be described by a state-space model,

where the state is given by a vector x and the excitation by a vector
u:

d
dt

x(t) � F(x(t),u(t))

* A linear system is a special case:
d
dt

x(t) � Ax(t) � Bu(t)

* Finding the solution of a linear system is based on finding the eigen-
values of the state transition matrix A.
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LINEARIZATION  (1)
* Nonlinear systems are difficult to solve in general. Consider the sys-

tems without excitation:

d
dt

x(t) � F(x(t)), F(x(t)) �
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* States x for which F(x(t)) � 0 are called equilibrium points.
* Suppose that x0 is an equilibrium point. For points x0 � �x close to

this point, using Taylor-series expansion:
d
dt

(x0 � �x) � F(x0) � F�(x0)�x � higher order terms

with F�(x) ���
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, the Jacobian.
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LINEARIZATION  (2)
* We had:

d
dt

(x0 � �x) � F(x0) � F�(x0)�x � higher order terms

* Neglecting the higher order terms:
d
dt
�x � F�(x0)�x

which is a linearized system. The eigenvalues of the Jacobian
around equilibrium points describes the local behavior.
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STABILITY
* Consider an initial state  x(0) in the state space close to an equilibri-

um point x0: �x(0)� x0
� � �.

+ The system is uniformly stable if there exists a � for any given �
such that �x(t) � x0

� � � for all t.

+ The system is asymptotically stable if a � can be found such that
lim
t��

x(t) � x0.

+ The system is marginally stable if the system is uniformly stable,
but not asymptotically stable.

+ The system is unstable if it is not uniformly stable.
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LYAPUNOV STABILITY (1)

* Given the system for which d
dt

x(t) � F(x(t)), suppose that a function

V(x) exists with the following properties in a neighborhood around
equilibrium points x0:

+ V(x) is continuous and has partial derivatives with respect of all
elements of x.

+ V(x0) � 0 for equilibrium points x0 and V(x) � 0 for x � x0.

* The system is uniformly stable if: d
dt

V(x) � 0 and asymptotically

stable if d
dt

V(x) � 0.
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LYAPUNOV STABILITY (2)

* d
dt

V(x) � 0, means:

�V
�x1

dx1
dt

�����
�V
�xn

dxn

dt
� �V�

d
dt

x � 0

* Because the gradient is always perpendicular to the contour, this
means that x moves closer to the equilibrium point.
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