

NEURAL NETWORKS DYNAMICS

DYNAMICS

Dynamical systems can be described by a state-space model, where the state is given by a vector x and the excitation by a vector **u**:

$$\frac{d}{dt}\boldsymbol{x}(t) = \boldsymbol{F}(\boldsymbol{x}(t), \boldsymbol{u}(t))$$

* A *linear system* is a special case:

$$\frac{d}{dt}\boldsymbol{x}(t) = A\boldsymbol{x}(t) + B\boldsymbol{u}(t)$$

Finding the solution of a linear system is based on finding the eigen-* values of the state transition matrix A.

January 12, 2000

NEURAL NETWORKS DYNAMICS

LINEARIZATION (2)

* We had:

$$\frac{d}{dt}(\mathbf{x}_0 + \Delta \mathbf{x}) = \mathbf{F}(\mathbf{x}_0) + F'(\mathbf{x}_0)\Delta \mathbf{x} + higher \text{ order terms}$$

Neglecting the higher order terms:

$$\frac{d}{dt}\Delta \boldsymbol{x} = F'(\boldsymbol{x}_0)\Delta \boldsymbol{x}$$

which is a linearized system. The eigenvalues of the Jacobian around equilibrium points describes the local behavior.

1

3

NEURAL NETWORKS

DYNAMICS

LINEARIZATION (1)

Nonlinear systems are difficult to solve in general. Consider the systems without excitation:

$$\frac{d}{dt}\mathbf{x}(t) = \mathbf{F}(\mathbf{x}(t)), \ \mathbf{F}(\mathbf{x}(t)) = \begin{cases} f_1(x_1, \dots, x_n) \\ \vdots \\ f_n(x_1, \dots, x_n) \end{cases}$$

- States x for which F(x(t)) = 0 are called *equilibrium points*.
- Suppose that x_0 is an equilibrium point. For points $x_0 + \Delta x$ close to this point, using Taylor-series expansion:

$$\frac{d}{dt}(\mathbf{x}_0 + \Delta \mathbf{x}) = \mathbf{F}(\mathbf{x}_0) + F'(\mathbf{x}_0)\Delta \mathbf{x} + higher order terms$$

with
$$F'(x) = \left[\frac{\partial}{\partial x_j}f_i\right]$$
, the Jacobian.

January 12, 2000

NEURAL NETWORKS DYNAMICS

STABILITY

- Consider an initial state x(0) in the state space close to an equilibrium point x_0 : $\|x(0) - x_0\| < \delta$.
 - + The system is *uniformly* stable if there exists a δ for any given ϵ such that $\|\mathbf{x}(t) - \mathbf{x}_0\| < \epsilon$ for all *t*.
 - + The system is *asymptotically* stable if a δ can be found such that $\lim x(t) = x_0.$ $t \rightarrow \infty$
 - + The system is *marginally* stable if the system is uniformly stable, but not asymptotically stable.
 - + The system is *unstable* if it is not uniformly stable.

January 12, 2000

January 12, 2000

2

4

NEURAL NETWORKS

LYAPUNOV STABILITY (1)

5

- * Given the system for which $\frac{d}{dt}x(t) = F(x(t))$, suppose that a function $V(\mathbf{x})$ exists with the following properties in a neighborhood around equilibrium points x_0 :
 - + V(x) is continuous and has partial derivatives with respect of all elements of x.
 - + $V(x_0) = 0$ for equilibrium points x_0 and V(x) > 0 for $x \neq x_0$.
- * The system is uniformly stable if: $\frac{d}{dt}V(\mathbf{x}) \leq 0$ and asymptotically stable if $\frac{d}{dt}V(\mathbf{x}) < 0$.

January 12, 2000

