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CONTENT-ADDRESSABLE MEMORIES
* Common memories: retrieve data by providing the address of the

memory location where the data is stored.
* Content-addressable memories (CAMs, also called associative me-

mories): retrieve data based on part of the data itself. Two types:
+ Autoassociative memories: part of the pattern to be retrieved is

given as input. Example: Hopfield memories.
+ Heteroassociative memories: one pattern is retrieved as function

of another. Example: Kanerva memories.
* The principle for the implementation of CAMs is to use the equilibri-

um points of nonlinear dynamical systems. They are built from inter-
connected artificial neurons.

* The equilibrium points are also called attractors. The area of the
state space around an attractor is a basin of attraction.
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HOPFIELD CAM MODEL (1)
* There are N neurons that are fully interconnected (connections be-

tween any pairs of neurons). The output values are given by: xi,
i � 1, ��� , N.

* The output values are discrete: xi � 1� xi � �1. All outputs are
collected in the vector x.

* The outputs are computed from: xi(t � 1) � g







�

�

�
N

j�1

wijxj(t)







�

	

. Note that

in this type of neural network, the weights are fixed and the state
(neuron outputs) evolve in time.

* The weights are symmetric: wij � wji .
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HOPFIELD CAM MODEL (2)
* The patterns to be stored in the memory are the vectors xp,

p � 1, ��� , Q.

* The weights are chosen as: wij � �
Q

p�1

xp
i
xp

j
. This is the Hebbian

learning rule.
* Note that the weights are the elements of the correlation matrix of

the patterns: W� �
Q

p�1

xp(xp)T.
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HOPFIELD CAM PROPERTIES
* States close to one of the patterns to be solved evolve to the that par-

ticular pattern (if some conditions are respected).
* States corresponding to the patterns are not the only stable states

(equilibrium points). An undesired stable state is called a spurious
state.
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LYAPUNOV STABILITY OF THE
HOPFIELD CAM MODEL (1)

* Consider the following Lyapunov function: V(x) � � 1
2
�
N

i�1

�
N

j�1

wijxixj.

* Because xixi is always positive: V(x) � C� 1
2
�
N

i�1

�
N

j�1,j�i

wijxixj.

* Suppose some xk changes value from time t to time t � 1 and all oth-
er outputs remain the same. The change in the Lyapunov function:

 �V � V(x(t � 1))� V(x(t))

�V � � �
N

l�1,l�k

wklxk(t � 1)xl(t) � �
N

l�1,l�k

wklxk(t)xl(t)
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LYAPUNOV STABILITY OF THE
HOPFIELD CAM MODEL (2)

* �V � 0 for xk(t � 1) � xk(t).

* If xk(t � 1) � �xk(t):

�V � 2 �
N

l�1,l�k

wklxk(t)xl(t) � 2xk(t)�
N

l�1

wklxl(t) � 2wkk.

* Both terms are negative (in the first term, the summation should
have a different sign than xk(t) due to the assumption; the second
term is negative as all wkk are positive due to the Hebbian learning
rule), proving that �V � 0 always holds which means that the sys-
tem always converges to an equilibrium point.
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STORAGE CAPACITY (1)
* Take a stable state in a Hopfield

memory equal to one of the pat-
terns to be stored:

 x(t � 1) � x(t) � xp.
* So:

 xp � g(Wxp).
* The ith neuron obeys:

xp
i
� g

�����

�

�

�
N

j�1

wijx
p
j

�����

�

�

� g���h
p
i
�
�
�.

* hp
i
 is called the induced local

field. Making use of the Heb-
bian learning rule:

hp
i
��

N

j�1

�
Q

q�1

xq
i
xq

j
xp

j
.

* By taking apart the terms for
which p � q and making use of
xp

j
xp

j
� 1 one gets:

hp
i
� Nxp

i
��

N

j�1

�
Q

q�1,q�p

xq
i
xq

j
xp

j
.

* The output of the ith neuron will
be stable as long as the abso-
lute value of the second term is
less than N.
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STORAGE CAPACITY (2)
* The second term of the equation, the noise o, can be written as:

o � �
Q

q�1,q�p

xq
i
�
N

j�1

xq
j
xp

j
� �

Q

q�1,q�p

xq
i
(xp � xq).

* So, if all the patterns to be stored were orthogonal, the second term
would always be zero. But the patterns don’t need to be orthogonal.

* Suppose that each of the patterns are random. Then, the average
value for each component is 0 (the average of 1 and �1) and the
variance is 1.

* The random variable O associated to the entire second term will
have � � 0 and �2 � (Q� 1)N. Assuming that Q � 1, the variance
is: QN.
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STORAGE CAPACITY (3)
* The distribution of the random variable O is binomial, but can be

approximated by a Gaussian with density function 1
2�NQ�

e�
o2

2NQ.

* So, the probability that the second term becomes larger than the first
one is:

Perror � P(O � N | xp
i
� �1) � P(O � �N | xp

i
� 1)

Perror �
1

2�NQ�
�
�

N

e�
o2

2NQdo� 1
��
�
�

N
2Q�

e�r2
dr

Perror �
1
2
���

�


1� erf���

�

�

N
2Q� ���

	




���

�

�
, with erf(z) � 2

��
�

z

0

e�y2
dy.

NEURAL NETWORKS

CONTENT-ADDRESSABLE MEMORIES

10

January 21, 2000

STORAGE CAPACITY (4)
* The error function for large z can be approximated by:

erf(z) � 2
��
�

z

0

e�y2
dy� 1� e�z2

�� z

* This means:

Perror �
1
2





�

�
1� erf




�

�

N
2Q� 




�

	








�
� N

2Q�
� e�

N
2Q

* The probability for an entire pattern to be stable:

[1� Perror]
N �




�

�
1� N

2Q�
� e�

N
2Q






�

N

� 1� N N
2Q�

� e�
N
2Q.

* The second term remains bounded by requiring: � N
2Q

� ln 1
N

.
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STORAGE CAPACITY (5)

* The last condition implies: Q � N
2 lnN

.

* Using a similar reasoning and approximating NQ by N2 one finds

that all patterns in the memory are likely to be stable for: Q � N
4 lnN

.

For more information consult:
[1] Haykin, S., Neural Networks, A Comprehensive Foundation, Prentice Hall International,

Upper Saddle River, New Jersey, Second Edition, (1999).

[2] Hassoun, M.H. (Ed.), ”Associative Neural Memories, Theory and Implementation”, Oxford
University Press, New York, (1993).

[3] Amit, D.J., ”Modeling Brain Function, The World of Attractor Neural Networks”, Cambridge
University Press, Cambridge, (1989).
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KANERVA MEMORIES: PRINCIPLES
* Also called sparse distributed

memory.

* It is heteroassociative; it is
meant to store pairs of patterns
(xp, yp), p � 1, ��� , Q.

* The patterns yp are not stored
in a single location of the ad-
dress space corresponding to
xp, but distributed among multi-
ple locations ‘‘close’’ to xp. It is
not even necessary that xp is it-
self a member of the address

space.
* The patterns yp are recovered

by adding and thresholding the
data stored at the locations
close to xp.

x1

x3

x2
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KANERVA MEMORIES: VISUALIZATION
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VECTOR DESCRIPTION (1)
* The vectors xp have dimension N. The vector elements are binary

valued but are encoded by �1 and 1 instead of the usual 0 and 1.

* The address space of the memory consists of M locations, M � 2N.
Every address mk, k � 1, ��� , M can be represented by a vector of N
elements encoded in the same way as the xp.

* Note that mk � xp is a measure for the distance between the two vec-
tors (not the Hamming distance). mk � xp � N means that the two
vectors have matching elements in all positions (their Hamming dis-
tance is zero); mk � xp � �N means that none of the elements
match.
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VECTOR DESCRIPTION (2)
* Collect all the row vectors

�mk�Tin a matrix A. Then

sp � �D
(Axp) is a column vec-

tor with elements 0 and 1. The
threshold function �D returns 1
if its argument corresponds to a
Hamming distance less than D
(the threshold is applied to all
vector elements).

* The contents of the memory
are to be found in a matrix C
(the vectors yp also have com-

ponents �1 and 1):

C � �
Q

p�1

sp(yp)T

* The retrieved data value z for a
given input x is found from (g is
a threshold function returning 1
if its argument is positive and 0
otherwise, applied to all vector
elements):

z� g�CT
�D

(Ax)�.

NEURAL NETWORKS

CONTENT-ADDRESSABLE MEMORIES

16

January 21, 2000

NEURAL-NET IMPLEMENTATION
* From z� g�CT

�D
(Ax)� it can

be seen that the Kanerva
memory can be implemented
by a two-layer feedforward (i.e.
without feedback) neural net-
work.

* The first layer transforms the
input x to an intermediate sig-
nal s using weights from A and
limiting function �D.

* The second layer transforms
the intermediate signal s to an

output signal z using weights
from CT and limiting function g.

x1

a11

xN

s1 sM

a1N

���

���

aN1 aNN

z1 zU���

c11 cU1 c1M cUM
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COMBINATORIAL OPTIMIZATION WITH
HOPFIELD NETWORKS (1)

* Consider the Lyapunov or energy function of Hopfield networks:

V(x) � � 1
2
�
N

i�1

�
N

j�1

wijxixj.

* Minimization of this function by the Hopfield network was proved for
neurons with output values �1 and 1 and the step limiting function.
The energy is also minimized for neurons with a sigmoid limiting
function and output values from 0 to 1 (with the symmetric weight
constraint):

xi � g(vi); vi ��
j

wijxj; g(v) � 1
1� e��v
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COMBINATORIAL OPTIMIZATION WITH
HOPFIELD NETWORKS (2)

* Zero-one quadratic program-
ming problems are problems
with Boolean variables xi
(i � 1, ��� , N) and a quadratic
cost function. A quadratic cost
function looks like:

 c(x) � �
N

x�1

�
N

x�1

cijxixj

 * The cost function has exactly
the same form as the energy
function of a Hopfield network:

 V(x) � � 1
2
�
N

i�1

�
N

j�1

wijxixj

* So, any problem with a qua-
dratic cost function is ‘‘solved’’
by constructing a Hopfield net-
work and deriving the weights
wij from the coefficients cij.

* The network will converge to a
solution if the cij are symmetric.
However, this solution will in
general be a local optimum.
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EXAMPLE: TRAVELING SALESPERSON
PROBLEM (TSP)

* Definition: find the shortest tour that visit all cities in a given set of
N cities exactly once; the distance between cities i and j is dij

(dij � dji ).

* Define Boolean variables xia, i, a � 1, ��� , N. xia � 1 means that city
i occurs at position a of the tour.

* A quadratic cost function for this problem is (the first term is the tour
length; the second penalizes illegal solutions; � is a parameter):

c ��
N

i�1

�
N

j�1

dij �
N

a�1

xiaxi(a�1 modN) � �
				

�

�

�
N

i�1

�
N

a�1

�
N

b�1,b�a

(xiaxib � xaixbi)
				

�

�
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PROBLEMS AND REMEDIES: POTTS
NEURONS

* Finding a local optimum is not enough.
* Constraints are implicitly encoded in the cost function which means

that there is no guarantee that they will be satisfied.
* Potts neurons tackle both problems:

+ The first problem is tackled by borrowing techniques from simu-
lated annealing (in the context of neural nets the terms mean field
annealing and Boltzmann machines are used).

+ The second problem is tackled by updating groups of neurons si-
multaneously.
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POTTS UPDATING RULE
* Consider the induced local field via of the neuron with output xia (as

e.g. used in the TSP example). Instead of applying a limiting function
that only depends on via, use an updating rule that involves all via,
a � 1, ��� , Mi (in the TSP example, Mi � N for all i).

xia � e
�via

T

�
Mi

a�1

e
�via

T

* This rule guarantees that �
Mi

a�1

xia � 1. It is hoped that one of the xia

gets close to one and all others close to zero (it does not always
work).

* The parameter T is the ‘‘temperature’’ and is gradually decreased.


