
ProRISC Workshop on Circuits, Systems and Signal Processing, November 1997.

1

A Genetic Approach to the Overlapped
Scheduling of Iterative Data-Flow Graphs

for Target Architectures with
Communication Delays

Erwin R. Bonsma and Sabih H. Gerez

Department of Electrical Engineering, University of Twente, The Netherlands

E-mail: s.h.gerez@el.utwente.nl

Abstract|This paper presents a method to solve the over-
lapped fully-static multiprocessor scheduling problem. An
iterative data-
ow graph (IDFG) is mapped on a target ar-
chitecture that allows �ne-grain parallelism. The goal is
the minimization of the iteration period. The method can
deal with nonzero delay times to communicate data between
processors as well as with link capacities in the interconnec-
tion network. Excellent results for benchmark IDFGs have
been obtained by the method that consists of three layers,
each concentrating on a di�erent aspect of the optimization
problem.

I. Introduction

An algorithm that contains computations that can be
executed simultaneously, o�ers possibilities of exploiting
the parallelism present by implementing it on appropriate
hardware such as a multiprocessor system. The class of al-
gorithms considered in this paper is limited to algorithms
that can be represented by homogeneous synchronous data-

ow graphs [1], also called iterative data-
ow graphs (ID-
FGs) [2]. Such an algorithm consists of a core computation
that is iterated an in�nite number of times and that does
not contain data-dependent decisions. Many algorithms in
the �eld of digital signal processing (DSP) belong to this
class.
A parallel implementation of an algorithm implies that

each operation in the data-
ow graph is mapped on a hard-
ware unit and a time instant. Finding these mappings is
called (processor) assignment and scheduling respectively.
A schedule is called nonoverlapped if all operations belong-
ing to the same iteration have to �nish before the opera-
tions of the next iteration can start; if operations belong-
ing to di�erent iterations can execute simultaneously, the
schedule is called overlapped [3]. Overlapped scheduling
is sometimes also called loop folding [4, 5]. An overlapped
schedule can be characterized by two entities: the iteration
period T0, the time between the invocation of the same op-
eration in subsequent iterations, and the latency, the time
that passes between the consumption of the �rst input and
the production of the last output in the same iteration.
Both times are expressed in multiples of the global system
clock period.

Erwin Bonsma is currently following the Arti�cial Intelligence Pro-
gramme at the University of Edinburgh.

In this paper only fully-static overlapped schedules are
considered which means that all iterations have the same
schedule and the same processor assignment. Two di�er-
ent optimization goals for scheduling are normally distin-
guished: in time-constrained scheduling, the goal is to use
as little hardware as possible for a given execution speed,
while in resource-constrained scheduling, the goal is to exe-
cute the IDFG as fast as possible on a given hardware con-
�guration. In this paper, the resource-constrained problem
is addressed.
The multiprocessor scheduling problem for iterative algo-

rithms has received quite some attention in the last years.
However, most of the publications have considered the sim-
pli�ed problem in which the time to communicate data
from one processor to another was negligible (see the ref-
erences in [6]). When communication delays are taken into
account, often target architectures are considered in which
setting up a communication or performing the transfer of
a single data word requires tens or even hundreds of sys-
tem clock cycles (see e.g. [7]). In such an architecture, it
only makes sense to have parallel implementations if the
basic tasks performed by a single processor, require a sim-
ilar number of cycles. This type of parallelism is called
coarse grain. In this paper, however, �ne-grain parallelism
is considered. The basic tasks are primitive operations such
as additions and multiplications and the processors in the
target architecture are supposed to transfer a data word
in just a few cycles. An example of a suitable architec-
ture is given in [8]. Other descriptions of realizations of
this type of architectures can be found in [6]. The method
presented in this paper can also deal with the classical ar-
chitectural synthesis hardware models (see e.g. [9]) where
di�erent functional unit types can be used and where re-
sults can be transmitted to another functional unit without
delay. Such models are simply a special case of target ar-
chitectures with communication constraints.
The rest of this paper is structured as follows: �rst the

problem is de�ned, then the di�erent aspects of the pro-
posed solution method are explained and �nally some ex-
perimental results are presented. Not all details of the so-
lution method can be explained here; readers are referred
to [10] for a full account of the method.

ProRISC Workshop on Circuits, Systems and Signal Processing, November 1997.

2

d1

d2
c 1

c 2

c 3

c 4

c 5

c 6
c 7

c 8

T0

+

**

* *

+ +

+

T0

o1

i 1

Fig. 1. IDFG of a second-order digital �lter section.

II. Problem Description

The IDFG consists of a vertex set V and an edge set
E. V contains computational nodes (such as additions or
multiplications), I/O nodes and delay nodes (a delay node
stores data received at its input during the current iteration
and makes this data available at its output in the next
iteration). Data in an IDFG
ows along the edges of E:
(u; v) 2 E implies that data produced by u is consumed by
v and that v cannot be executed before the completion of
u. One also says that the edges in E indicate precedence
constraints. An example of an IDFG is shown in Fig. 1
that represents a second-order digital �lter section. In the
�gure, delay elements are indicated by T0.
The target architecture consists of a given network of

processors or functional units. Each processor can execute
all or a subset of the computations contained in the IDFG.
The time necessary to execute a speci�c operation (e.g. an
addition) is the same for all processors. For a computa-
tional node v 2 V , this time is expressed in multiples of
the system clock time and denoted by d(v). The intercon-
nection network can also be described as a graph with a
vertex set F representing functional units (processors) and
an edge set L representing unidirectional or bidirectional
links. Each link is able to transfer a single data word at
a time. The time to transfer a data word through a link
is the same for all links and equals � cycles of the system
clock. Parallel links can be used to model the possibility of
transferring multiple data words simultaneously between a
pair of functional units.
The set of all operation types that can occur in an IDFG

is
. The operation type of a computational node v 2 V is
given by
(v). The set of operation types that a functional
unit f 2 F can execute is given by �(f) (
(v) 2
 and
�(f) �
).
The problem addressed in this paper is to �nd the over-

lapped fully-static schedule with minimal T0 that imple-
ments a given IDFG on a given target architecture. The
solution should be fully speci�ed in the sense that a start
time and a processor is associated with each operation and
sets of time instants and links with each data transfer. A
secondary goal is to minimize the latency.

III. Solution Method

The investigated solution method consists of an algo-
rithm in which three layers can be distinguished (see
Fig. 2). A genetic algorithm at the top level takes care
of the main optimization goal. Genetic algorithms (see e.g.

GLOBAL HEURISTIC

GENETIC ALGORITHM

for all operations
 ...
 ...
endfor

simple
schedule

T0

schedule
+ realized

permutation of operations
+ initial T0

detailed

simple

hardware
model

operation ∆ T0

BLACK-BOX
HEURISTIC

complete the
scheduling

detailed
schedule

Fig. 2. The structure of the proposed solution method.

[11]) are inspired by the evolution process in nature. The
evolution process is simulated in a population of feasible
solutions: the better the quality of a solution, the more
likely it will be that the solution will survive into the next
generation or will act as a parent for new solutions added
to the next generation. A key issue in genetic algorithms
is that each solution is encoded as a linear string of sym-
bols called a chromosome. New members of the population
are created by copying parts of information of two parent
chromosomes in order to create a new child chromosome.
A crossover operator takes care of this task. The �gure of
merit associated to a chromosome, or rather to the feasi-
ble solution encoded by it, is called �tness. The goal of a
genetic algorithm is to �nd the chromosome with optimal
�tness using the techniques just described.
Experience in practice shows that a genetic algorithm

is a powerful optimization method as long as the search
space has a simple structure. However, trying to solve a
scheduling problem with a genetic algorithm using a direct
encoding of the schedule is not a good idea. It is di�cult or
even impossible to encode feasible solutions in such a way
that a chromosome that has been obtained after the appli-
cation of commonly used crossover operators, is itself the
encoding of a feasible solution (it is e.g. likely that the new
solution will contain violations of precedence constraints
as the crossover operator does not have problem-speci�c
knowledge).
However, an indirect encoding of the solution has re-

cently been reported to give good results [12, 13]. The idea
is to only encode a permutation of all computational oper-
ations in the IDFG in a chromosome. A greedy algorithm
that uses such a permutation to generate a schedule, is part
of the cost function that evaluates the �tness of a chromo-
some. Whenever the greedy algorithm has to make a choice
between operations to schedule, the ordering in the permu-

ProRISC Workshop on Circuits, Systems and Signal Processing, November 1997.

3

tation guides this choice. This greedy algorithm forms the
second layer of the proposed method and is discussed in
more detail in Section IV-A. It is called here the global
scheduling heuristic because its main task is to roughly
solve the scheduling and assignment problems based on de-
tailed knowledge of the IDFG but only a simpli�ed model
of the target architecture. The main purpose of the global
heuristic is to help the genetic algorithm to search the so-
lution space fast and e�ciently.
The fact that the global heuristic is not based on a com-

plete and realistic multiprocessor model has a number of
advantages. The �rst one is that the global heuristic can
be used for a wide range of multiprocessor architectures
because the assumed hardware model is very general. A
second advantage is that the global scheduling heuristic
does not have to be too complex, making it is easier to
design a good heuristic.
Detailed knowledge of the target architecture is provided

by the third layer of the proposed method called the black-
box scheduling heuristic to be discussed in Section IV-B.
While the global heuristic only knows the minimal time re-
quired to communicate data between pairs of processors,
the black-box heuristic has knowledge of link presence and
occupancy. The black-box heuristic schedules one opera-
tion at a time and uses a greedy heuristic to do so. The
advantage of separating the black-box heuristic from the
global heuristic is that only the black-box heuristic needs
to be extended in order to support new classes of multipro-
cessor architectures.

IV. Explanation of the Heuristics

In this section, the main ideas of the two heuristics are
presented. A step-by-step description of the two algorithms
is given in Section V.

A. Global Scheduling Heuristic

Let �(v) denote the time at which a computational node
v 2 V should start its execution in the solution found
for the scheduling problem. Then the following inequal-
ity holds for any pair u; v 2 V of computational nodes for
which there is a path going from u to v through n delay
nodes (including the case n = 0) [2]:

�(v) � �(u) + d(u)� nT0 (1)

Although this inequality only holds for hardware in which
communication delays are neglected, it can be used for the
problem of this paper as will be explained below. All in-
stances of Inequality 1 (for all relevant values of u and v)
can be represented in an inequality graph [2]. The longest
path between all possible pairs of vertices in this graph can
be computed using e.g. the Floyd-Warshall algorithm [14]
and the obtained longest-path distances can be stored in a
distance matrix DT0

i [13]. Note that the contents of a dis-
tance matrix depend on the value of T0. So, the longest-
path from a node u 2 V to a node v 2 V is given by
D

T0
i [u; v] (for the simplicity of notation, symbolic rather

than integer indices are used here; the subscript i refers to
the inequality graph).

Insert cycle here

E
-1

A
1FU1

FU2

1 2 3 4

A
0

B
0

D
0

E
0

1b

FU3 F
1

C
1

E
-1

A
1FU1

FU2

1 2 3

A
0

B
0

D
0

E
0

4

FU3

C
1

F
1

Fig. 3. Cycle insertion in a partial schedule.

The global heuristic uses a simpli�ed model of the target
hardware. Apart from the duration d(v) of any operation in
v 2 V , it knows which type of operations can be handled by
each of the processors in F and the shortest communication
distance (in multiples of the link delay �) between any pair
of processors given by the matrix Dh (where the subscript
h refers to \hardware"). The model, therefore, amounts
to assuming an in�nite number of parallel links for each
actual link.
The global heuristic starts by scheduling the �rst op-

eration in the list P at time 0 and assigns it to the �rst
processor in F that is able to execute the operation. It
then goes on to schedule the other operations in the order
of occurrence in P with the restriction that an operation v

is temporarily skipped if none of the successors or prede-
cessors of v in the IDFG has already been scheduled.
Suppose that that the subset of operations that have

been already scheduled is given by S. If the assignment to
a processor is neglected, a yet unscheduled operation v 2 V

can start its operation at any of the instants of the range
Rnc(v) = [Rnc;min(v); Rnc;max(v)], where:

Rnc;min(v) = max
s2S

�
�(s) +DT0

i [s; v]
�

Rnc;max(v) = min
s2S

�
�(s) �DT0

i [v; s]
�

If the assignment to a processor f 2 F is considered and
the assignment of an operation v 2 V to a processor is given
by �(v), the range of valid instants for the scheduling of a
a yet unscheduled operation v 2 V is further constrained
to Rc(v; f) = [Rc;min(v; f); Rc;max(v; f)], where:

Rc;min(v; f) = max
s2S

�
�(s) +DT0

i [s; v] +Dh[�(s); f]
�

Rc;max(v; f) = min
s2S

�
�(s) �DT0

i [v; s]�Dh[f; �(s)]
�

For both ranges, an empty range (lower bound larger
than upper bound) means that the proposed processor as-
signment cannot be realized without increasing T0. Situa-
tions can occur in which the range is empty for any of the
processors in the target architecture and increasing T0 is
unavoidable.
Increasing T0 by cycle insertion is a key issue in the

scheduling approach presented in this paper. It is illus-
trated in Fig. 3. Note that cycle insertion does not require
rescheduling of already scheduled operations.
Given an operation v to be scheduled, the global heuristic

�rst selects a number of time-processor pairs called global

ProRISC Workshop on Circuits, Systems and Signal Processing, November 1997.

4

base schedule instants that look the most favorable and
then evaluates the number of extra cycles to be inserted
for each pair. The one requiring the least number is cho-
sen and the heuristic continues with the next element in P .
The evaluation of a global base schedule instant is �rst per-
formed by the global heuristic itself in order to decide for a
time and processor mapping. This may already require the
insertion of additional cycles. Then the \black-box" heuris-
tic discussed below is invoked to handle the assignment of
the data transfers to the links. The information passed to
the black-box heuristic is a black-box base schedule instant.

B. Black-Box Scheduling Heuristic

The black-box heuristic has full knowledge of the target
architecture and especially the link set L. It receives the
request to evaluate a black-box base schedule instant for
a given operation v 2 V and returns the number of extra
cycles required to satisfy the request (see also Fig. 2). In
order to calculate this number it has to assign the input
and output data transfers of v to the links connected to
the proposed processor. It may be that routing decisions
have to be taken in this process. Link contention will be a
reason to insert cycles.

V. Step-by-Step Descriptions

This section presents the step-by-step descriptions of the
two heuristics.

A. Global Scheduling Heuristic

1. Provide P , an ordered list of all the operations that
have to be scheduled, and T0;initial , the initial iteration
period; set: T0 = T0;initial .

2. Retrieve (and remove) the �rst operation from the list
P . Schedule this operation on the �rst FU that can
execute this operation and set its start time to 0.

3. Choose c, the next operation to schedule, as follows:
�nd the �rst operation from the list P for which at
least one direct predecessor or successor operation has
already been scheduled. Remove this operation from
the list P .

4. Calculate the valid start times for operation c. Use the
distance matrix DT0

c , the start times of the operations
that have already been scheduled, and the distance
matrix Dh to calculate Rnc(c) and Rc(c; f) for f 2 F .

5. Set ntot;best = 1. Set the preferred start time
tpref and the set of base schedule instants B as fol-
lows: if Rnc;max(c) = 1, then tpref = Rnc;min(v)
and B = f(f; t)j
(c) 2 �(f); Rnc;min(c) � t <

Rnc;min(c) + T0g; if Rnc;min(c) = �1, then tpref =
Rnc;max(c) and B = f(f; t)j
(c) 2 �(f); Rnc;max(c) �
T0 � t < Rnc;max(c)g; otherwise, tpref =
either Rnc;min(c) or Rnc;max(c) (depending on the
number of (un)scheduled predecessors and succes-
sors of c in the IDFG) and B = f(f; t)j
(c) 2
�(f); Rnc;min(c) � t < Rnc;max(c)g. The elements
(f; t) of B will be processed in increasing order of the
di�erence jtpref � tj.

6. Retrieve and remove the �rst base schedule instant
from B. Use it to construct a valid schedule instant.
The start time t and the number of cycles that has
to be inserted in the schedule, ninsert , are set such
that: the communication delays with the scheduled
predecessor operations are satis�ed, the operation �ts
in the schedule, and the communication delays with
the scheduled successor operations are satis�ed.

7. When ninsert � ntot;best go to Step 9. Otherwise, use
the valid heuristic schedule instant as a base black-box
schedule instant to construct the corresponding valid
black-box schedule instant. The black-box heuristic
will return the extra number of cycles ninsert;bb that
it had to insert itself. Set ntot = ninsert + ninsert;bb .

8. If ntot < ntot;best then set sbest to the current valid
schedule instant and set ntot;best = ntot .

9. If B is not empty and ntot;best > 0 go to Step 6.
10. Schedule the operation as speci�ed by the valid sched-

ule instant sbest and set T0 = T0 + ntot;best .
11. When the list P is not yet empty, go to Step 3.

B. Black-Box Scheduling Heuristic

1. Provide c, the operation that has just been scheduled
by the global heuristic.

2. Set ninsert;bb = 0.
3. Find all data transfers that have to be scheduled and

place them in a list, T . Every direct predecessor or
successor operation of c that has already been sched-
uled, and that does not execute on the same FU as
c does, requires that a data transfer is scheduled. A
data transfer is a pair of operations: (c; s) for a trans-
fer to a successor s and (p; c) for a transfer from a
predecessor p.

4. Sort the list T so that the data transfers are ordered
by increasing slack time. The slack time of a transfer
(cs; cd), where the number of delay elements between
the source cs and the destination cd equals n is given
by:

tslack = �(cd)� �(cs)� d(cs) +

nT0 � � �Dh[�(cs); �(cd))]

5. If T is empty, go to Step 15. Otherwise retrieve and
remove the �rst data transfer (cs; cd) from T .

6. If c = cd the data transfer will be scheduled from cs to
cd, otherwise from cd to cs. Note that the direction in
which the data transfer is scheduled is not necessarily
the direction that the data will travel. Here, only the
case from cs to cd is discussed for the sake of simplicity.

7. Set tslack equal to the slack time of the data transfer.
Set tmin = �(cs) + d(cs). Set the set R so that it
contains all paths with minimal length that connect
�(cs) with �(cd).

8. Set ntot;best = 1 and set tpref = tmin . Set L so that
it contains every communication link that is the �rst
link of one or more of the paths in R. Use L to set
B = f(l; ts)jl 2 L; tmin � ts � tmin + tslackg. The base
schedule elements in B are ordered by an increasing
distance between t and tpref .

ProRISC Workshop on Circuits, Systems and Signal Processing, November 1997.

5

9. Retrieve and remove the �rst base schedule instant
from B. Use it to construct a valid schedule instant
for the communication task. Set the start time t and
the number of cycles that has to be inserted in the
schedule, ninsert , such that the communication task
�ts the in the link schedule.

10. If ntot < ntot;best then set sbest to the current valid
schedule instant and set ntot;best = ntot and ts;best = t.

11. If B is not empty and ntot;best > 0 go to Step 6.
12. Schedule the communication task as speci�ed by the

schedule instant sbest . Set ninsert;bb = ninsert;bb +
ntot;best .

13. If the routing of the data transfer has been completed
go to Step 5.

14. Update the slack time tslack = tslack+tmin�ts;best . Set
tmin = ts;best + �. Update the list R by removing all
paths that did not start with the communication link
that was chosen. For the remaining paths, truncate
them by removing the �rst link. Go to Step 8.

15. Return ninsert;bb , the total number of cycles that has
been inserted.

VI. The Genetic Algorithm

The power of the scheduling method presented here
comes from the combination of the greedy heuristics and
the genetic top layer. Di�erent experiments were per-
formed to optimize the genetic algorithm used [10]. It
turned out that best results were obtained for:
� the crossover operator called uniform crossover for

permutations [13, 15];
� a �tness function that depends both on the iteration
period as well as the latency (somewhat opposite to
the expectation, taking the latency into account also
gives better results for the iteration period).

� no mutation (mutation is the process of introducing
random copying errors when constructing a new gen-
eration).

VII. Experimental Results

A prototype of the solution method has been imple-
mented in CMU Common Lisp running on an HP 9000/735
server. The GECO package developed by George Williams
(freely available on the Internet) was used to provide for
most of the genetic algorithm code. It is implemented in
CLOS (Common Lisp Object System) which makes it eas-
ily extendible to incorporate a user's requirements.
No well-documented benchmarks are known to the au-

thors that exactly match the problem addressed in this
paper (although suitable architectures have e.g. been de-
scribed in [6]). Therefore, the benchmarks presented here
consist of well-known IDFGs (see e.g. [2]) in combination
with self-constructed target architectures. The IDFGs con-
sidered have been called here second (see Fig. 1), third
(see Fig. 4), lattice (see Fig. 5), jaumann (see Fig. 6), and
elliptic (see Fig. 7). These IDFGs have been mapped
on the six multiprocessor con�gurations shown in Fig. 8.
Of all possible combinations of IDFG-hardware pairs, 14
have been selected. They are listed in Table I. Apart from

d1

c 1

c 2

c 3

c 4

c 5

c 6 c 7

c 8

T0

+

**

* *

+ +

+

T0

o1

i 1

+ *

T0

d2

d3

c 12

c 11 c 10 c 9

*

+

Fig. 4. The IDFG of a third-order IIR �lter, called third.

c
1

c
2

c
3

c
4

c
5

c
6

c
7

c
8

c
12

c
11

c
10

c
9

c
13

c
14

c
15

T 0

i 1
o

1

d
1

d
2

d
3

d
4

+

+
+

+

+

*
*

+
+

*
+

+
*

T 0
+

T 0
+

T 0

Fig. 5. The IDFG of a fourth-order all-pole lattice �lter, called
lattice.

TABLE I

The fourteen different scheduling problems.

Problem Algorithm Hardware
Structure + * �

A second strong-ring-4 1 2 2
B second medium-ring-4 1 2 2
C second weak-chain-4 1 2 1
D third weak-chain-4 1 2 1
E third weak-chain-3 1 2 1
F third diamond-6 1 2 1
G jaumann weak-chain-3 1 5 1
H jaumann weak-chain-3 1 5 2
I lattice weak-chain-3 1 5 1
J lattice weak-chain-3 1 5 2
K elliptic weak-chain-4 1 2 1
L elliptic weak-chain-4 1 2 2
M elliptic weak-chain-3 1 2 1
N elliptic weak-chain-3 1 2 2

ProRISC Workshop on Circuits, Systems and Signal Processing, November 1997.

6

c
1

c
2

c
3

c
4

c
5

c
6

c
7

c
8

c
12

c
11

c
10

c
9

c
17

c
13

c
14

c
15

c
16

o
1

d
1

d
2

d
3

d
4

T 0

+
++

+

+
++

+

+
+

+
+

+
*

*
*

*
T 0

T 0
T 0

i 1

Fig. 6. The IDFG of a fourth-order Jaumann wave digital �lter,
called jaumann.

showing the combinations, the table speci�es the duration
of an addition, multiplication and data transfer for each
problem. The results obtained are summarized in Table II.
For each problem, the table shows the average number of
evaluations (over 50 runs), the average runtime, the best
T0, the percentage of times that the best T0 was found, the
best value for the latency for the optimal T0 as well as the
percentage of times that the best combination was found.
A selection of the results obtained is given in Fig. 9.
From the result just presented and many other compa-

rable results it can be concluded that the performance of
the solution method is very satisfactory. Solutions of good
quality are obtained in reasonable time. When assessing
the time, one should realize that the global and black-box
heuristics are executed for every chromosome constructed
by the genetic algorithm which shows that these heuristics
operate quite fast in spite of their complexity. Another fact
that con�rms the con�dence in the method are benchmark
results for target architectures with negligible link delays.
These results have the same quality as already published
results, although more CPU time is required compared to
dedicated algorithms.

VIII. Conclusions

This paper has presented a method for the �ne-grain
fully-static overlapped scheduling of iterative data-
ow
graphs on target architectures with nonnegligible commu-
nication delays. The method consists of three layers of
knowledge. At the highest level, a genetic algorithm is
allowed to view the problem as �nding an optimal permu-
tation of all operations. At the next level, the permutation

c 1

c 2

c 3 c 4

c 5

c 6

c 7c 8

c 12

c 11c 10

c 9

c 20c 19

c 18

c 17

c 13 c 14

c 15

c 16

c 33

c 29

c 25

c 21

c 22

c 26

c 30

c 34

c 31

c 27c 23

c 24

c 28

c 32

i 1

d1

d2

d7

d6

d3

d4

d5

+

+

+

+

+

+

+++

+

+

+

+

+

+

+

+

+

++

+

+

*

*

*

*

*

*

*

T0

T0

T0

T0

T0

-

+

+

+

* T0

T0

o1

Fig. 7. The IDFG of a �fth-order wave digital elliptic �lter, called
elliptic.

TABLE II

The scheduling results for the fourteen problems.

Avg. Avg. Best Schedule
evals runtime T0 Latency

A 249 11s 4 0.98 6 0.44
B 265 12s 4 0.20 9 0.20
C 276 12s 3 0.56 7 0.56
D 376 24s 5 1.00 5 0.12
E 392 25s 6 1.00 4 0.08
F 385 27s 3 0.54 9 0.14
G 485 33s 16 1.00 9 0.94
H 655 43s 18 1.00 13 0.98
I 442 27s 16 0.98 30 0.62
J 508 33s 18 0.98 31 0.16
K 761 134s 18 0.84 16 0.60
L 734 129s 21 0.56 18 0.52
M 709 111s 18 0.08 20 0.02
N 701 111s 21 0.50 14 0.04

ProRISC Workshop on Circuits, Systems and Signal Processing, November 1997.

7

L1 L2FU2
*/+

FU1
*/+

FU3
*/+

FU6
*/+

FU5
*/+

FU2
*/+

FU3
*/+

L3 L1

L2

FU4
*/+

L4

L5L6

L7

L8

L9

FU1
*/+

L1

L2

FU2
*/+

FU1
*/+

FU4
*/+

FU3
*/+

L3 FU2
*/+

FU1
*/+

FU4
*/+

FU3
*/+

L3

L1

L2

L4

L5

L6

FU1
*/+

FU2
*/+

FU3
*/+

FU4
*/+

L3

L1

L2L4

L5

FU1
*/+

FU2
*/+

FU3
*/+

FU4
*/+

L3L1

L2

L4

L5

L6

L7

L8

(a)

(b) (c)

(d) (e)

(f)

Fig. 8. The benchmark multiprocessor con�gurations: weak-chain-3
(a), weak-chain-4 (b), strong-chain-4 (c), medium-ring-4 (d),
strong-ring-4 (e), diamond-6 (f).

FU1

FU2

1 2

FU3

FU4

0

4
0

2
0

1
0

6
-1

7
0

8
0

8
-1

5
-2

3
1

L1

L2

L3

2

7

2

3

2

5

7

6

6

5

2

8

2

8

1

2

FU1

FU2

1 2

FU3

FU4

0

FU5

FU6

L1

1 20

L2

L3

L4

L5

L6

L7

L8

 1

 22
0

1
1

3
1

4
1

5
1

6
1

6
0

7
0

9
0

10
0

11
0

8
-1

3
2

 2

 11

 11

4

 11

 3

 11

9

 11

 6

 11

 6

 11

12

 11

12

12
-2

L9
8

 12

 7

 8

 11

 5

 11

 5

5

 7

FU1

FU2

1 2 3

FU4

FU3

L4

L1

L5

L2

L3

2 - 3

3 - 1

2 - 8

2 - 7

2 - 5

8 - 6

7 - 62 - 5

8
1

2
0

1
0

4
0

7
-1

3
1

5
-2

6
-2

0

FU1

FU2

1 2 3 4

FU3

5

21

20

22

19

34

33

22

19

26

34

15

18

 6

 5

L2

L1

34

26

6 7 8 9 10 11 12 13 14 15 16 17

13
0

12
0

 8
0

 6
0

 7
0

15
0

17
0

 9
0

11
0

14
0

32
0

34
0

21
1

27
1

10
1

16
1

 1
1

 3
0

 2
0

 4
0

 5
0

19
0

18
0

20
0

22
0

24
0

25
0

26
0

23
0

33
0

29
0

30
0

31
0

28
0

27

22

33

32

28

27

27

24

21

18

16

21

 1

 6

11

10

 6

 3

10

15

10

9

0

(a) (b) (c)

(d)

(e)

FU1

FU2

1 2 3 4

FU3

5

L2

L1

6 7 8 9 10 11 12 13 14 15 16 17 180 2019

22
0

24
0

25
0

26
0

23
0

33
0

29
0

30
0

31
0

28
0

27
0

 8
0

 6
0

 7
0

15
0

17
0

 9
0

32
0

 3
0

 2
0

 4
0

 5
0

19
0

13
0

12
0

14
0

18
0

34
0

11
0

 1
1

10
1

16
1

21
1

20
1

10-9

26-2322-23

8-121-61-5 21-1721-18 3-1 19-1622-19

27 - 24 27 - 2227 - 2134-27

10-15

Fig. 9. Schedules generated for: Problem B (a), Problem C (b),
Problem F (c), Problem M (d), and Problem N (the most impor-
tant loops are shown) (e).

is used to guide a greedy heuristic with a limited knowl-
edge of the target hardware. At the lowest level, a heuristic
with detailed knowledge of the hardware takes care of the
assignment of data transfers to the communication links.
The goal of the method is to minimize the iteration period
(and latency). A crucial aspect of the heuristics is the abil-
ity to insert cycles in a partial schedule and increase the
iteration period when the scheduling algorithms get stuck.
In this way, earlier scheduling decisions do not need to be
reconsidered. Due to this greedy approach a genetic top-
level search becomes feasible as has become clear from the
results obtained.
Future research in this direction will concentrate on tak-

ing more aspects of the target architecture into account
(e.g. registers) as well as experimenting with alternative
genetic algorithms.

References

[1] E.A. Lee and D.G. Messerschmitt, \Synchronous data
ow,"
Proceedings of the IEEE, vol. 75, no. 9, pp. 1235{1245, Septem-
ber 1987.

[2] S.M. Heemstra de Groot, S.H. Gerez, and O.E. Herr-
mann, \Range-chart-guided iterative data-
ow-graph schedul-
ing," IEEE Transactions on Circuits and Systems I: Fundamen-
tal Theory and Applications, vol. 39, pp. 351{364, May 1992.

[3] K.K. Parhi and D.G. Messerschmitt, \Static rate-optimal
scheduling of iterative data-
ow programs via optimum unfold-
ing," IEEE Transactions on Computers, vol. 40, no. 2, pp.
178{195, February 1991.

[4] G. Goossens, J. Rabaey, J. Vandewalle, and H. De Man, \An
e�cient microcode compiler for application speci�c DSP proces-
sors," IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, vol. 9, no. 9, pp. 925{937, Septem-
ber 1990.

[5] T.F. Lee, A.C.H. Wu, Y.L. Lin, and D.D. Gajski, \A
transformation-based method for loop folding," IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 13, no. 4, pp. 439{450, April 1994.

[6] V.K. Madisetti, VLSI Digital Signal Processors, An Introduc-
tion to Rapid Prototyping and Design Synthesis, IEEE Press
and Butterworth Heinemann, Boston, 1995.

[7] J. Sanchez and H. Barral, \Multiprocessor implementation mod-
els for adaptive algorithms," IEEE Transactions on Signal Pro-
cessing, vol. 44, no. 9, pp. 2319{2331, September 1996.

[8] D.C. Chen and J.M. Rabaey, \A recon�gurable multiprocessor
IC for rapid prototyping of algorithmic-speci�c high-speed DSP
data paths," IEEE Journal of Solid-State Circuits, vol. 27, no.
12, pp. 1895{1904, December 1992.

[9] D.D. Gajski, N.D. Dutt, A.C.H. Wu, and S.Y.L. Lin, High-Level
Synthesis, Introduction to Chip and System Design, Kluwer
Academic Publishers, Boston, 1992.

[10] E.R. Bonsma, \Multiprocessor scheduling of �ne-grain iterative
data-
ow graphs using genetic algorithms," M.S. thesis, Uni-
versity of Twente, Department of Electrical Engineering, June
1997, EL-BSC-018N97.

[11] D.E. Goldberg, Genetic Algorithms in Search, Optimization and
Machine Learning, Addison-Wesley, Reading, Massachusetts,
1989.

[12] M.J.M. Heijligers and J.A.G. Jess, \High-level synthesis schedul-
ing and allocation using genetic algorithms based on constructive
topological scheduling techniques," in International Conference
on Evolutionary Computation, Perth, Australia, 1995, pp. 56{
61.

[13] M.J.M. Heijligers, The Application of Genetic Algorithms
to High-Level Synthesis, Ph.D. thesis, Eindhoven University
of Technology, Department of Electrical Engineering, October
1996.

[14] T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to
Algorithms, MIT Press, Cambridge, Massachusetts, 1990.

[15] L. Davis, Ed., Handbook of Genetic Algorithms, Van Nostrand
Reinhold, New York, 1991.

